Chapter 1

Linked Data & the Semantic Web
Standards

Aidan Hogan

Digital Enterprise Research Institute, National University of Ireland, Galway

Department of Computer Science, Universidad de Chile

1.1 IntroductiOniiniiiii i e e e
1.2 Semantic Web ...
1.3 Resource Description Framework (RDF),

1.3.1 RDF Termsoueniiii e
1.3.2 RDF Triples and Graphs ...t

1.3.3 RDF Vocabularyc.ooiiiiiiii i
1.3.4 RDF Syntaxesoouiiiiiiiiiii i
1.4 RDF Semantics, Schemata and Ontologies
1.4.1 RDF Semanticscoouiiiiiiiiiiiiiiiiiiiiiii i
1.4.2 RDF Schema (RDFS) ...
1.4.3 Web Ontology Language (OWL) ...,
1.5 Querying RDF with SPARQLo
1.5. 1 Query Types ..o
1.5.2 Dataset Clause and Named Graphsooiit
1.5.3 Query Clausec..iuuiiuiiiiiie i

1.5.4 Solution Modifiers ...
1.5.5 Towards SPARQL 1.1 ... oo e

1.6 Linked Datao.oiiiii i
1.6.1 The Early Semantic Web on the Web

1.6.2 Linked Data Principles and Best Practices
1.6.3 Linking Open Data i

1.1 Introduction

On the traditional World Wide Web we all know and love, machines are
used as brokers of content: they store, organize, request, route, transmit, re-
ceive and display content encapsulated as documents. In order for machines
to process the content of documents automatically—for whatever purpose—
they primarily require two things: machine-readable structure and semantics.
Unfortunately, despite various advancements in the area of Natural Language
Processing (NLP) down through the decades, modern computers still struggle

3

4 Linked Data Management: Principles and Techniques

to meaningfully process the idiosyncratic structure and semantics of natural
language due to ambiguities present in grammar, coreference and word-sense.
Hence, machines require a more “formal” notion of structure and semantics
using unambiguous grammar, referencing and vocabulary.

As such, various standards (both de facto and de jure) have emerged to
partially STRUCTURE the Web’s content using agreed-upon formal syntaxes
and data-models. The current structure of the Web’s content is predom-
inantly based around the idea of markup whereby the different elemental
parts of the content in a document are delimited by use of syntactic con-
ventions, including matching start tags and end tags (e.g., <title>Title of
Document</title>), nested elements, attributes, and so forth. The eXtensi-
ble Markup Language (XML) provides a generic standard for markup-style
languages, allowing machines to parse XML content into a data model con-
sisting of an ordered tree of typed strings. Other non-markup-based methods
for structuring content have also become common. For example, Comma Sep-
arated Values (CSV) provides a simple syntax that allows machines to parse
content into tabular (or even relational) data-structures. Recently, JavaScript
Object Notation (JSON) has seen growth in adoption, providing syntax to
represent content that can be parsed into nested complex objects and asso-
ciative arrays.

However, as far as a machine is concerned, having formally structured con-
tent is only half the battle. Without some SEMANTICS (aka. meaning) for at
least some parts of the content, machines would not be able to do much more
than split the content up by its delimiters and load its structure. Much of
the semantics that powers the current Web is based on consensus collected in
standards (e.g., RFCs, W3C, etc.) for software developers and content creators
to read and follow. The HyperText Markup Language (HTML) standard is
perhaps the most prominent such example, providing a markup-based vocab-
ulary that allows to state how a document should be rendered in a browser;
for example, the <title> tag is used by publishers to denote the title of the
document, which will then be predictably displayed by a Web browser in its
top tool-bar (or tab-bar). The agreed-upon semantics for the HTML vocabu-
lary of tags and elements, then, lie in the annotation of a HTML document
for consistent rendering purposes. Other markup-based specifications on the
Web (such as Rich Site Summary (RSS)) promote an agreed-upon meaning
for a set of terms that fulfill the needs of specific other applications (in the
case of RSS, providing details of site updates to a feed reader).

Importantly, for agreed-upon vocabularies such as HTML or RSS, the addi-
tion (or renaming/removal) of terms from the vocabulary requires a new stan-
dard, and eventually new applications to interpret the new terms accordingly:
the semantics of relevant terms are enumerated in human-readable documen-
tation and hard-coded in (often imperative) programs. Although standards
such as XML Schema (XSD) can be used to assign some machine-readable se-
mantics to XML content—such as what are the legal and/or required children
of an element or attribute (e.g., an element employee should have a staffID

Linked Data € the Semantic Web Standards 5

attribute), or simple typing of elements and text values—such semantics are
limited to defining constraints that define the notion of a “valid document” for
some purpose, or for parsing datatypes such as integers, booleans and dates.
In other words, XSD is more concerned with machine validation rather than
machine readability. Furthermore, terms often serve a singular purpose within
the context of a given application or a given schema: as an example, there is
a <title> tag in both HTML and RSS, but how they should be interpreted
differs significantly for the respective consumer applications.

So where does this leave the Web?

Consider a bunch of cooking enthusiasts who want to start sharing personal
recipes with each other over the Web. Each participant will want to search
over all recipes to find things like: “citrus-free desserts” or “winter soups
made from root vegetables” or “wine-based gravy for beef” or “barbeque” and
so forth. Some of the enthusiasts create a new site and invite users to enter
recipes in structured (HTML) forms, allowing to state what ingredients are
needed, in what quantities and units, what steps are required for preparation,
and in what order. The recipes are stored in inverted keyword indexes and
structured relational databases to allow for searching and querying over later.
As the site’s content grows, a tag-based system is created to allow users to fill
in commonly searched terms not mentioned in the recipe text, like bbq, gravy,
vegan and so forth. Users can comment on recipes to give their experience
and ratings.

After all of the hard work, the users of the site are quite happy with
the functionality. Users can search for content by keyword, by rating, or using
faceted browsing over the ingredients of different recipes. However, some users
still find it difficult to find the recipe they want. For example, Sally is allergic
to citrus and although tags exist for common allergies, there are no tags for
citrus. Thus, Sally has to go through each individual dessert recipe to ensure
that the ingredient list does not contain lemons, oranges, limes, grapefruit,
tangerines and other agrumes, or processed ingredients that themselves con-
tain agrumes. Another user, Fred, has his eye on a recipe for Black risotto after
enjoying it on holiday. Preferably, the recipe uses fresh cuttlefish, but if that
is not available, whole squid can be used instead. Both of these are obscure
ingredients and Fred is unsure where to find either of them in his local area.
He searches through a variety of online shopping sites for local supermarkets
and eventually finds fresh squid but is still unsure whether or not cuttlefish is
available close-by.

Later, the maintainers of the cooking site decide to merge with another
site that contains recipes for cocktails. There is much overlap between both
sites in terms of the structure of input forms, ingredients used, preparation
details, tags, and so forth. The maintainers of both sites decide to extend the
cooking site and prepare a site-dump of the cocktail site to integrate with the
cooking database. However, aside from all of the manual effort required in
manually mapping and restructuring the content of the cocktail corpus, there
are further alignment problems. Recipes on the cooking site are expected to

6 Linked Data Management: Principles and Techniques

have a preparation time, which is missing from the cocktail site; the cocktail
site has alternative names for some ingredients, such as “cantaloupe” instead
of “melon”; the cocktail recipes have no tags; and so forth. The maintainers
eventually have to heavily adapt their database design to accomodate the
incoming data, and hack together some imperative scripts to align terms and
to seed common tags for cocktails like non-alcoholic, vegan, etc., based on
ingredient lists, extending them manually.

Although this example admittedly takes some liberties, it serves to illus-
trate some of the shortcomings of the current Web. The advent of Web 2.0
technologies has blurred the line between users and publishers: the Web now
contains a lot of user-generated content, be it primary content such as recipes,
or secondary content in the form of comments, ratings, lists, tags, etc. How-
ever, content is heavily fragmented across different sites—even where there
is a high degree of overlap across that content—with only a coarse layer of
hyperlinks bridging individual sites. Content is often created in the context
of a given site for the functionality of that site: though content may often be
of general interest, it is often created with a singular purpose (e.g., manually
tagging recipes containing lemons with citrus). As a result, content becomes
locked into a site, due to some combination of licensing or technical issues, or
simply because the content is not stated in a reusable way. Because so much
of the content on the Web is not directly reusable, there are then high levels
of redundancy in the manual creation of factual content across different sites
(e.g., tagging lemon cocktails again with citrus). Similarly, content gained
through one site cannot be used to automatically interact with another site
(such as to search nearby shops for ingredients of recipes).

And so, in an effort to address these shortcomings, the primary goal of the
“Semantic Web” is to make more of the Web’s content available in a machine-
readable format such that it can be reused for (m)any purpose(s), such that
it can be automatically combined and integrated with other machine-readable
content, and such that machines can (to some known extent) interpret and
automatically act upon that content. For this envisaged Semantic Web, you
would only need to say that “all lemons are citrus fruits” once: so long as you
said it the right way—on the Web, using an globally agreed-upon identifier
for lemon, described using an agreed-upon data-model, formalizing the claim
using an agreed-upon vocabulary with well-defined meaning—the machines
could do the rest.

This chapter continues by first outlining the original vision of the Semantic
Web and the core components and technologies deemed necessary to make it
a reality. Thereafter, we discuss the various core Semantic Web languages
that have been standardized in recent years and that comprise the heart of
the modern Semantic Web. Finally, we discuss Linked Data: a set of best-
practices on how to identify Semantic Web resources and how to organize and
interlink Semantic Web data published in a decentralized manner on the Web.

Linked Data € the Semantic Web Standards 7

| Trust |
: Proof ::
[5
| Unifying Logic I
_______________________ J
Querying & Rules Schema & Ontologies
(SPARQL & RIF) (RDFS & OWL)

Data Model (RDF)

AydeibordA1p

Syntax (XML/Turtle/XHTML/JSON)

F—— - — — — — — —

Identifiers (URI/IRI) Characters (Unicode)

FIGURE 1.1: Semantic Web Stack (aka. Semantic Web Layer Cake)

1.2 Semantic Web

On a high-level, the Semantic Web can be conceptualized as an extension
of the current Web so as to enable the creation, sharing and intelligent re-use
of (deeply) machine-readable content on the Web. This idea of the Semantic
Web is almost as old as the Web itself, and the roots of the Semantic Web are,
of course, much older than the Web. However, two major milestones for the
inception of the modern notion of the Semantic Web were the original W3C
recommendation of the first Resource Description Framework (RDF) standard
in February 1999 [39] outlining the core data model (described in detail later
in Section 1.3), and the 2001 publication of Berners-Lee et al.’s seminal paper
where the authors outlined their vision for the Semantic Web [9].

Traditionally, the technical blue-prints for building the Semantic Web from
the ground up have often been represented through various incarnations of the
high-level “Semantic Web Stack” (aka. “Semantic Web Layer Cake”) originally
conceived by Berners-Lee; yet another such incarnation is illustrated in Fig-
ure 1.1. Each layer of the stack represents a technical “piece of the puzzle”
needed to realize the vision of the Semantic Web. Some parts of the puzzle
already exist and can be re-used. However, much of the stack necessarily needs
novel techniques; these parts are italicized in Figure 1.1.

The lower levels of the stack relate to foundational elements of the Seman-
tic Web that are in-common with the Web itself:

Characters: Like the current Web and various other software applications,
the Semantic Web requires some standard to map from binary streams

8 Linked Data Management: Principles and Techniques

and storage to textual information. For this, the Semantic Web relies on
the standard Unicode character-set.

Identifiers: If the Semantic Web is about describing things—be they concep-
tual or concrete—in a machine-readable manner, these things will need
globally agreed-upon identifiers. The natural choice for identifiers is thus
to use the Uniform Resource Identifier (URI) specification, which is al-
ready used on the Web to identify documents (or more accurately, repre-
sentations). Newer Semantic Web standards have also started to adopt
the Internationalized Resource Identifier (IRI) specification: a general-
ization of URIs to support the broader Unicode standard.

Syntax: To allow machines to automatically parse content into its elementary
constituents, the Semantic Web requires syntaxes with formally defined
grammars. For this, existing generic syntaxes such as XML and JSON
can be used. Though the use of existing syntaxes allows for using legacy
tools, custom syntaxes have also been created to encode Semantic Web
data using terse and intuitive grammars; these novel syntaxes are all a
derivative of the Terse RDF Triple Language (Turtle) syntax.!

Above the Syntax layer lies the beating heart of the Semantic Web:

Data Model: In order for machines to exchange machine-readable data in a
generic fashion, they need to agree upon a common data-model under
which to structure content. This data-model should be generic enough to
provide a canonical representation (without idiosyncrasies) for arbitrary
content irrespective of its domain or nature or syntax, and to enable
processing this content using standard off-the-shelf technologies. The
core data-model elected for use on the Semantic Web is RDF, which can
be serialized using one or more of the aforementioned syntaxes.

Schema & Ontologies: While the RDF data-model brings a universal struc-
ture to content, it does not bring (much) semantics or meaning to con-
tent. Thus, the Semantic Web requires formal languages with which to
make claims about things described in RDF content. These formal lan-
guages offer a meta-vocabulary with well-defined semantics that can be
used in combination with the RDF data-model to define schemata and
ontologies. The core languages offered as part of the current Semantic
Web standards are the RDF Schema (RDFS) and Web Ontology Lan-
guage (OWL) standards.

Querying & Rules: Ultimately, content described in RDF needs to be pro-
cessed by querying and rule-based systems that allow for specifying
conjunctive conditions and query patterns. The results of conjunctive

1Turtle is itself inspired by Notation3 (N3). However, N3 goes beyond RDF and should
not be considered an RDF syntax. Turtle can be loosely speaking the intersection of RDF
and N3.

Linked Data € the Semantic Web Standards 9

queries and rules can be used to extract pertinent elements of RDF con-
tent, to generate results for a user interface, to infer novel RDF data
based on premises formed by existing content, to specify constraints
that an RDF dataset should conform to, or to define triggers that per-
form actions when the RDF data meets certain conditions. The current
querying standard for the Semantic Web is the SPARQL Protocol and
RDF Query Language (SPARQL), which provides a mature, feature-rich
query language for RDF content. The current standard for rules on the
Semantic Web is the Rule Interchange Format (RIF), which captures
the expressivity of various existing rule-based languages and offers a
powerful library of built-in functions.

This chapter will primarily focus on the layers and standards enumerated
above. This book will primarily focus on the support for Querying in the
context of the RDF Data Model layer.

At the top and side of the stack in Figure 1.1 are a number of layers drawn
with dashed lines. Although proposals to realize these layers have been made
in the research literature, mature standards and tooling have yet to emerge.
These are speculative areas of the Semantic Web, and that is reflected in the
following discussion:

Unifying Logic: Lower down in the stack lie the query languages, rule primi-
tives and ontological standards that are compatible with RDF data and
that form the core of the Semantic Web stack. The envisaged goal of
the Unifying Logic layer is as an interoperability layer that provides the
foundation for combining these lower-level technologies into a whole,
with a unifying language to engage queries and rules over knowledge
represented in RDF and associated ontologies/schemata. Various works
in this area have looked at combining rules with querying [47, 48], com-
bining ontological interpretations with querying [35, 20], and combining
rules and ontologies [37, 32, 36].

Proof: Given that the Semantic Web would enable software agents to per-
form various automated tasks over decentralized sources of structured
information, possibly combining data from multiple external sources and
applying various reasoning and querying primitives to achieve some goal,
it is important that the software agent provide some form of proof that
can be used by the client to validate the procedure or information used
to, e.g., complete the task or derive an answer.

Trust: Related to the underlying Proof layer, the Trust layer would be re-
quired by clients on the Semantic Web to determine which sources of
information should be trusted in a proof, or by clients and servers as
an access control mechanism to determine which service providers or
other agents on the Web are allowed access to which data, and so forth.
To achieve this, the Trust layer would not require an a priori whitelist

10 Linked Data Management: Principles and Techniques

or blacklist of agents, but should rather be able to determine trust for
agents it has not seen before based on attributes of that agent (e.g.,
based on a social network, being a governmental body, etc.).

Cryptography: This layer lies to the side of the Semantic Web stack, indi-
cating that although important, cryptography is somewhat tangential
to the core Semantic Web technologies. Obviously, the Semantic Web
would require cryptographic techniques for verifying identity and for al-
lowing access control mechanisms, and so forth. However, many existing
cryptography technologies could be borrowed directly from the Web, in-
cluding digital signatures, public-key encryption/decryption algorithms
such as RSA, secure protocols such as HT'TP Secure (HTTPS) that use
TSL/SSL, and so forth.

The original Semantic Web vision [9] is indeed an ambitious one. Through-
out the years, various aspects of the stack have been tackled by a variety of
research groups, developers and standardization bodies. However, much of the
original vision remains unrealized. On a high-level, we see that lower parts
of the Semantic Web stack borrow directly from existing Web technologies,
middle parts of the stack have been realized through various standardization
efforts, and higher parts of the stack remain largely unrealized. In general,
however, the stack is best viewed in a descriptive manner, not a prescriptive
manner: it is an illustration, not a specification.

Many developments have been in made in the past few years on the middle
layers of the stack in terms of the RDF data-model and related standards
built on top for querying RDF, representing schemata and ontologies in RDF,
and expressing rules that can be executed over RDF data. This book focuses
largely on these middle layers, and the remainder of this chapter outlines the
core Semantic Web standards that have been proposed in these areas, starting
with the RDF standard.

1.3 Resource Description Framework (RDF)

The RDF standard [42] provides the basis for a core agreed-upon data-
model on the Semantic Web. Having an agreed-upon data-model is crucial
for the interoperability of data produced by different independent publishers
across the Web, allowing for content represented in RDF to be generically
processed and indexed by off-the-shelf tools no matter what its topic or origin.

Herein, we give a brief walkthrough of the design principles and the fea-
tures of RDF. We do not cover all features, but rather focus on core concepts
that are important for further reading of this book. Throughout, we will use
Turtle’s syntactic conventions for representing RDF terms and RDF data.

Linked Data & the Semantic Web Standards 11

These conventions will be introduced in an incremental fashion, but if unfa-
miliar with the syntax, the reader may find it worthwhile to look through the
examples in the W3C Working Draft for Turtle [5].

1.3.1 RDF Terms

The elemental constituents of the RDF data-model are RDF terms that
can be used in reference to resources: anything with identity. The set of RDF
terms is broken down into three disjoint sub-sets: URIs (or IRIs), literals and
blank nodes.”

URIs serve as global (Web-scope) identifiers that can be used to identify any
resource. For example, http://dbpedia.org/resource/Lemon is used
to identify the lemon fruit (and plant) in DBpedia [12] (an online RDF
database extracted from Wikipedia content). In Turtle, URIs are de-
limited with angle-brackets: <http://dbpedia.org/resource/Lemon>.
To avoid writing long and repetitive full URI strings, Turtle allows
for the use of CURIE-style shortcuts [11] where a re-usable prefix can
be defined: @prefix dbr: <http://dbpedia.org/resource/>. There-
after, URIs can be abbreviated using prefix:localname shortcuts—
e.g., dbr:Lemon—where the local-name is resolved against the in-scope
prefix definition to generate the full URI form.

Literals are a set of lexical values denoted with inverted commas in Turtle.
Literals can be either:

Plain Literals which form a set of plain strings, such as "Hello
World", potentially with an associated language tag, such as such
as "Hello World"@en.

Typed Literals which comprise of a lexical string and a datatype,
such as "2"~"xsd:int. Datatypes are identified by URIs (such as
xsd:int), where RDF borrows many of the datatypes defined for
XML Schema that cover numerics, booleans, dates, times, and so
forth. These datatypes define which lexical forms are valid for that
datatype (e.g., to state that "p"~"xsd:int is invalid), and ulti-
mately provide a mapping from valid lexical strings to a value space
(e.g., from "2"~"xsd:int to the value of the number two). Turtle
provides shortcuts for common datatypes, where the use of numbers
and boolean values without quotes—e.g., 2, 2.4, false—indicate a
corresponding datatype literal. Plain literals without language tags
map to the same value as lexically identical xsd:string values.

2 Although support for IRIs is featured in more recent RDF-based standards, to avoid
confusion, we henceforth stick with the notion of URIs in our discussion and definitions.
The distinction between URIs and IRIs is not important to the discourse presented.

12 Linked Data Management: Principles and Techniques

Blank Nodes are defined as existential variables used to denote the exis-
tence of some resource without having to explicitly reference it using a
URI or literal. In practice, blank nodes serve as locally-scoped identi-
fiers for resources that are not otherwise named. Blank nodes cannot be
referenced outside of their originating scope (e.g., an RDF document).
The labels for blank nodes are thus only significant within a local scope.
Intuitively, much like variables in queries, the blank nodes of an RDF
document can be relabeled (bijectively) without affecting the interpre-
tation of the document. In Turtle, blank nodes can be referenced explic-
itly with an underscore prefix _:bnodel, or can be referenced implicitly
(without using a label) in a variety of other manners.

We can now provide formal notation for referring to the different sets of
RDF terms:

Definition 1. The set of RDF terms is the union of three pair-wise disjoint
sets: the set of all URIs (U), the set of all literals (L) and the set of all blank
nodes (B). The set of all literals can be further decomposed into the union of
two disjoint sets: the set of plain literals (L) and the set of typed literals (Ly).

Importantly, RDF does not take the Unique Name Assumption (UNA): two
terms can (and often do) refer to the same referent. Since RDF is intended to
be used as a common data model for the Web, it is likely that two different pub-
lishers may use different terms to refer to the same thing. For example, the URI
http://rdf.freebase.com/ns/m.09%_ b is used by Freebase—another online
publisher of RDF—to identify the lemon fruit/tree. Thus, by not taking the
UNA, RDF and its related standards allow for data from the DBpedia and
Freebase exporters to be merged without requiring that terms map bijectively
to referents. In fact, although RDF terms are composed of pair-wise disjoint
sets, different types of RDF terms can also refer to the same thing. For exam-
ple, the URI http://km.aifb.kit.edu/projects/numbers/web/n2 is used
by the Linked Open Numbers project [59] to assign a URI to the number 2,
thus referring to the same value as the term "2"~"xsd:integer although the
actual terms themselves are in disjoint sets.

1.3.2 RDF Triples and Graphs

Having covered the RDF terms used to refer to things, we now cover RDF
triples which are used to make statements about those things. The notion of
RDF triples constitutes the foundation of the Semantic Web’s core data model.
As its name suggests, an RDF triple is simply a 3-tuple of RDF terms. The first
element of the tuple is called the subject, the second element the predicate, and
the third element the object. An RDF triple can then be seen as representing an
atomic “fact” or a “claim”. Importantly, RDF triples have fixed arity (length
of three) with fixed slots (subject, predicate, object), constituting a generic
common framework that enables interoperability.

We can formally define the notion of an RDF triple as follows:

Linked Data & the Semantic Web Standards 13

Definition 2. An RDF triple t is defined as a triple t = (s,p,0) where s €
U UB is called the subject, p € U is called the predicate and o € UUB UL
is called the object.

Informatively, the typical role of the three RDF triple positions can be
intuited as follows:

Subject: Filled by an RDF term (either a URI or a blank node) that refers
to the primary resource being described by the triple.

Predicate: Filled by an RDF term (must be a URI) that identifies the rela-
tion between the subject and the object.

Object: Filled by an RDF term (can be a URI, blank node or literal) that
fills the value of the relation.

How RDF triples can then be used to describe resources is best illustrated
with an example:

Example 1. The following example presents some of the RDF data talking
about lemons and about citrus from the DBpedia exporter (%’ denotes a com-
ment line in Turtle):

(# PREFIX DECLARATIONS

@prefix dbr: <http://dbpedia.org/resource/> .

@prefix dbo: <http://dbpedia.org/ontology/> .

@prefix dbp: <http://dbpedia.org/property/> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

RDF TRIPLES

dbr:Lemon rdfs:label "Lemon"@en .
dbr:Lemon dbp:calciumMg 26 .

dbr:Lemon dbo:family dbr:Rutaceae .
dbr:Lemon dbo:genus dbr:Citrus .
dbr:Citrus rdfs:label "Citrus"Qen .
dbr:Citrus dbo:family dbr:Rutaceae .
dbr:Citrus dbo:family dbr:Aurantioideae .
-

J

Here we see four prefiz declarations and then seven RDF triples (delimited by
periods in Turtle). Each triple is comprised of three RDF terms. The subject
position contains URIs (or blank nodes) that identify what can be viewed as the
primary resource being described (in this case, dbr:Lemon and dbr:Citrus).
The predicate position contains a URI that identifies the relation (aka. at-
tribute) being described for that resource (e.g., rdfs:label, dbo:genus). The
object position contains URIs and literals (and potentially blank nodes) that
refer to the value for that relation (e.g., 26, dbr:Citrus).

Turtle permits some abbreviations when writing triples that contain repe-
titions. Omitting the prefiz declarations for brevity, the following triples rep-
resent the same content as above:

14 Linked Data Management: Principles and Techniques

()

RDF TRIPLES
dbr:Lemon rdfs:label "Lemon"Qen ;
dbp:calciumMg 26 ;
dbo:family dbr:Rutaceae ;
dbo:genus dbr:Citrus .
dbr:Citrus rdfs:label "Citrus"Qen ;
dbo:family dbr:Rutaceae , dbr:Aurantioideae .

- J
Here, ‘;’ indicates that the subsequent triple has the same subject as the pre-
vious triple, allowing to omit that term. Also, *, ” indicates that the subsequent

triple contains the same subject and predicate as the previous triple, allowing
to omit those terms.

It is common practice to conceptualize RDF datasets as directed labeled
graphs, where subjects and objects are drawn as labeled vertices and predi-
cates are drawn as directed, labeled edges. By convention, literal vertices are
drawn as rectangles, and URI vertices and blank nodes are drawn as ellipses
(labels for blank node vertices are often omitted).

Example 2. The following diagram renders the above RDF dataset as a di-
rected labeled graph,

"Lemon"@en

A

"Citrus"@en

q, A
bo . fa'ﬂjl
7

rdfs:label rdfs:label
dbo:genus
dbr:Lemon > w@

dbp:calciumMg dbo:family

\

dbr:Aurantioideae

It is worth nothing that the RDF data-model is not directly isomorphic with
the notion of directed labeled graphs. In particular, edge labels can themselves
be vertices, which cannot be represented in such a diagram. This occurs when
a predicate term also appears in a subject or object position; for example, if
one were to add the following triple to the data in question:

{dbo:genus rdfs:label "Genus"@en .]

one would either need to duplicate the dbo:genus term for both a verter and
an edge, or to allow extending edges between edges. Both remedies would break
the standard formal conventions for a directed labeled graph.

Although some authors have suggested alternative representations such as

Linked Data & the Semantic Web Standards 15

bipartite graphs for RDF [28], directed labeled graphs remain an intuitive and
popular conceptualization of RDF data.? As such, RDF is often referred to as
being graph-structured data where each (s, p,o0) triple can be seen as an edge

s 2 0. In fact, a set of RDF triples is formally referred to as an RDF graph.

Definition 3. A finite set of RDF triples G C (UUB) x U x (UUBUL)
is called an RDF graph.

Since RDF graphs are defined in terms of sets, it follows that the ordering
of RDF triples in an RDF graph is entirely arbitrary and that RDF graphs
do not allow for duplicate triples. The graph-structured nature of the RDF
data-model lends itself to flexible integration of datasets. Additional edges
can be added extensibly to the graph at any time. Edges in the graph use
globally-scoped URI identifiers. When vertices are identified with URIs, they
too can be referenced externally and connected to other vertices.

There is one slight complication in the notion of RDF graphs, caused by
blank nodes. Blank nodes are intended to be locally-scoped terms that are
interpreted as existential variables—as denoting the existence of something
without naming it. The labels of blank nodes are not of significance outside
of the local scope. This gives rise to a notion of isomorphism between RDF
graphs that are the same up to (bijective) blank-node relabeling: isomorphic
RDF graphs can be considered as containing the same “content”.* Further-
more, when merging two (or more) RDF graphs, it is important to ensure that
there are no conflicts in blank-node labels. If two RDF graphs share a blank
node with the same label, that blank node is not considered the same across
the two graphs. Hence, the notion of an RDF merge is introduced to avoid
blank-node label conflicts.

Definition 4. Given two RDF graphs, G1 and G3, an RDF merge of these
two graphs, denoted G1 W Ga, is defined as the set union G| U G, where G
and G are isomorphic copies of G1 and Gy respectively such that the copies
do not share any blank nodes with common labels.

The existential nature of blank-nodes also gives rise to the notion of
(non-)lean RDF graphs, whereby non-lean graphs contain redundant blank
nodes [29]. We do not go into detail on this particular subject as it relates to
an often overlooked and rarely relevant aspect of RDF [41], but rather make
the reader aware of the issue with an illustrative example.

Example 3. The following dataset features two blank nodes (omitting prefix
declarations for brevity where ex: refers to an arbitrary example namespace):

(ex:LemonPieRecipe ex:ingredient dbr:Lemon . W

3Where a predicate also appears in the subject or object position, most commonly, the
term is duplicated as a vertex and an edge.
4 An analogy would be to consider two queries that are the same up to variable relabeling.

16 Linked Data Management: Principles and Techniques

dbr:Lemon rdfs:label "Lemon"Qen .
ex:LemonPieRecipe ex:ingredient _:bnl .
_:bnl rdfs:label "Lemon"@en .
ex:LemonPieRecipe ex:ingredient _:bn2 .

Analogously, since the labels of blank nodes are not important other than in
a local scope, Turtle permits using ‘[1° as a shortcut to represent blank nodes:

ex:LemonPieRecipe ex:ingredient dbr:Lemon .

dbr:Lemon rdfs:label "Lemon"@en .

ex:LemonPieRecipe ex:ingredient [rdfs:label "Lemon"@en] .
ex:LemonPieRecipe ex:ingredient [] .

Both of these data snippets represent isomorphic RDF graphs, either of which
can be loosely read as stating the following:

1. The first two triples state that the recipe ex:LemonPieRecipe has the
ingredient dbr :Lemon, which has the label "Lemon"@en.

2. The third and fourth triples state that the same recipe has some ingre-
dient, which has the label "Lemon"@en.

3. The fifth triple states that the same recipe has some ingredient.

Here, point 8 is made redundant by knowledge of points 1 € 2, and point 2
is made redundant by knowledge of point 1. Thus the RDF graph represented by
the above triples can be considered non-lean. The lean version of this graph—
containing no redundancy due to existential blank nodes—would then be:

ex:LemonPieRecipe ex:ingredient dbr:Lemon .
dbr:Lemon rdfs:label "Lemon"@en .

Both the lean and the non-lean versions can be considered as containing the
same core information. A common misconception would be to view the origi-
nal RDF graph as indicating the presence of three ingredients. However, it is
important to remember: (1) RDF does not take the UNA, (2) blank nodes do
not identify particular things, only the existence of things.

1.3.3 RDF Vocabulary

The notions of RDF triples and RDF graphs thus form the core of the
RDF data model. In addition, the RDF standard provides a set of “built-
in” vocabulary terms under a core RDF namespace (a common URI prefix
scheme) that standardize popular RDF patterns. We do not cover all of the
built-in RDF vocabulary terms, instead covering the most prevalent features.

The most popular term in the RDF vocabulary is rdf : type, which is used
to assign resources sharing certain commonalities into classes.

Linked Data & the Semantic Web Standards 17

Example 4. The following data assigns siz instances to five different classes:

(# PREFIX DECLARATIONS)
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

RDF TRIPLES

ex:LemonPieRecipe rdf:type ex:Recipe .

ex:RisottoRecipe rdf:type ex:Recipe .

dbr:Lemon rdf:type dbo:Plant , dbo:Eukaryote .

dbr:Citrus rdf:type dbo:Plant , dbo:Species .

dbo:genus a rdf:Property .

dbo:order a rdf:Property .

- J

Resources can be instances of multiple classes and classes can have multiple
instances. As illustrated by the last two triples, Turtle syntax allows for using
“a” as a simple shortcut for the URI rdf:type. Furthermore, the last two
triples contain the rdf :Property class: a built-in RDF class used to denote the
set of all properties (URI terms used as relations that appear in the predicate

position of triples).

The rdf : type term is by far the most frequently used of the built-in RDF
vocabulary. As we will see later in the next section, the semantics of classes
introduced by use of the rdf:type relation can be defined using the RDFS
and OWL standards.

Another quite widely used feature of RDF is its vocabulary for describ-
ing RDF collections (aka. RDF lists). Since the set-based RDF data-model
has no inherent ordering, RDF collections can be used to define an ordered
(and closed) list using a linked-list pattern. RDF standardizes an agreed-upon
vocabulary and structure for defining such lists.

Example 5. The following is an RDF graph containing an ordered collection
of steps for a recipe.

ex:LemonadeRecipe ex:steps _:11 .
:11 rdf:first ex:Squeezelemons .
:11 rdf:rest _:12 .

112 rdf:first ex:AddWater .

112 rdf:rest _:13 .

:13 rdf:first ex:AddSugar .

:13 rdf:rest rdf:nil .

These triples state that the resource ex:LemonadeRecipe has a set of steps,
which is represented as an RDF collection containing three elements. The RDF
collection itself is essentially a linked list. The following diagram illustrates
this linked list structure.

18 Linked Data Management: Principles and Techniques

ex:LemonadeRecipe

ex:steps

rdf:rest

rdf :rest rdf:rest
11 »(:12) >

rdf:first

rdf:first
rdf:first ex:AddSugar
ex:AddWater

ex:SqueezelLemons

Each of the blank nodes _:11, _:12 and _:13 represent a (sub-)list with two
outgoing relations: rdf :first indicates the single element attached to that
(sub-)list and rdf :rest connects to the subsequent (sub-)list. The list is ter-
minated with the built-in rdf :nil term, which indicates an empty list. Though
not enforced by the RDF standard, (sub-)lists are typically represented by
blank nodes and—uwith the exception of rdf:nil—have precisely one value
for rdf :first that can be any RDF term, and one value for rdf :rest. This
structure provides two main benefits: (1) the list is ordered, (2) the list is
closed.

Turtle provides a convenient shortcut syntax using ‘O’ to indicate a list:

[ex:LemonadeRecipe ex:steps (ex:Squeezelemons ex:AddWater ex:AddSugar)]

This Turtle snippet serializes an RDF graph isomorphic with the full form
represented above.

The RDF vocabulary also provides support for a number of other features
that are not often used and that we do not discuss here in detail:

RDF Containers offer an alternative to collections for specifying either or-
dered or unordered lists in RDF. However, unlike collections, containers
cannot be closed.

RDF n-ary Predicates provide a standard mechanism for specifying com-
plex relationships in RDF. For example, one may wish to not only state
that a recipe has the ingredient lemon, but also to state the quantity of
lemon it contains. This can be achieved using n-ary predicates whereby
a new RDF resource is created to represent and describe the relation
itself.

RDF Reification provides a method to talk about individual RDF triples
themselves within RDF. The method works by creating a new resource
that refers to an RDF triple, stating what subject, predicate and object
it has, and then adding additional information about that RDF triple.

Linked Data & the Semantic Web Standards 19

We do not cover these standard RDF features in detail since they are rarely
used and, in fact, there have been calls to deprecate such features in future
versions of RDF [61]. For more about the above features, we instead refer the
interested reader to the RDF primer [42].

1.3.4 RDF Syntaxes

There are a number of syntaxes available for writing RDF data down—
for serializing RDF data. Thus far, we have been using the Turtle syntax
for examples: Turtle is perhaps the most human-readable syntax available for
encoding RDF data. However, there are a variety of options available.

RDF /XML [4] is one of the oldest and most established syntactic repre-
sentations for RDF, having been standardized early on [39] (and later
revised [4]). As its name suggests, RDF /XML involves encoding RDF in
the XML format. The core rationale behind RDF /XML was to leverage
already mature XML tools for creating and parsing RDF serializations.®
RDF /XML remains one of the most widely RDF syntaxes in use today:
for example, the SPARQL and OWL standards only require RDF /XML
input/output support for full compliance.

Turtle [5] is a custom syntax for RDF based on the related Notation3 (N3)
format [8] from which it drops features that go beyond RDF. Turtle aims
at a concise and intuitive syntax for representing RDF, with shortcuts
for commonly used RDF features. The use of Turtle is not as popular
as RDF/XML, primarily because at the time of writing, Turtle has yet
to be standardized (though it should be soon [5]). However, Turtle also
forms the basis of the SPARQL query syntax. Due to its concise and
readable nature, and its relation to SPARQL, this book will primarily
use Turtle syntax for examples.

N-Triples [23] is a simple syntax for RDF and a proper subset of Turtle: all
N-Triples files are valid Turtle. N-Triples disallows all forms of Turtle
shortcuts, requiring that all RDF terms are written in their full form; for
example, prefixes are not allowed where URIs must instead be written
in full using <> delimiters. Triples must be written in full and delimited
by newlines. Thus, in N-Triples, each individual line contains all the
necessary information to parse the triple on that line independent of
the rest of the document. This makes N-Triples popular for streaming
applications and for fault-tolerant line-at-a-time processing.

RDFa [2, 1] provides syntax for embedding RDF data into (X)HTML docu-
ments. The core rationale behind RDFa is to allow for embedding RDF

5... at least on a syntax level. Since RDF/XML cannot offer a canonical XML represen-
tation of RDF, technologies such as XQuery and XPath that are designed to navigate and
process XML trees had little application for RDF other than on a syntax level.

20 Linked Data Management: Principles and Techniques

data intended for machine consumption into HTML documents intended
for human consumption, avoiding the need to have separate documents
for each. Having one document for both machines and humans sim-
plifies hosting RDF data, particularly aspects like content negotiation,
etc. The original RDFa recommendation [2] has been superseded by the
RDFa 1.1 Core standard [1], which makes a variety of changes primar-
ily aiming to remove the reliance on XHTML and to make the original
syntax more usable for Web developers. Relatedly, an RDFa 1.1 Lite
version—a lightweight, easy-to-learn and frequently sufficient subset of
RDFa 1.1 Core—has also been standardized, aimed at Web developers.

JSON LD [56] is a JSON-based syntax for representing data in a format
that equates largely to RDF. Since JSON is widely used as a serialization
format by many Web applications, JSON LD would then allow Web
developers to parse RDF using the legacy JSON parsing mechanisms
available in the scripting languages of their choice, and, for example,
allow for handling RDF graphs as Javascript objects. Being a relatively
recent proposal, JSON LD is currently a W3C Working Draft [56].

No matter what syntax is chosen, the data are represented in the same
RDF data model: it is possible to convert directly from RDF in one syntax to
another, and although the result may not be canonical, both input and output
will represent the same RDF data.b

1.4 RDF Semantics, Schemata and Ontologies

Thus far, we have covered structural aspects of RDF. As the outset of
this chapter, we also highlighted the importance of semantics for providing
machines with an ‘interpretation” of the data they process, allowing them to
perform automated tasks based on the content in front of them. This section
outlines the semantics of RDF itself, as well as two other related standards
that extend RDF with richer semantics: RDFS and OWL.

1.4.1 RDF Semantics

The semantics of RDF has been standardized in the form of a model the-
ory [29], which, in this case, uses mathematical concepts to provide a formal
foundation for the machine-processable meaning of RDF data. The details
of the model theory underpinning RDF Semantics are not important for our

6There are very minor exceptions to this rule: for example, RDF/XML cannot encode
certain RDF graphs that contain predicates that cannot be referenced using QName con-
ventions.

Linked Data & the Semantic Web Standards 21

purposes and are thus considered out of scope—we instead refer the reader
to the RDF Semantics standard [29]. To summarize, model theory introduces
the notion of worlds that serve as interpretations of RDF data, whereby RDF
triples are seen as making claims about the nature or configuration of that
world. The more that is claimed about the world through RDF, the more
specific the world becomes in order to make those RDF claims true, and thus
the narrower the field of possible interpretations becomes. The mechanics of
the interpretation of RDF graphs provides the mathematical basis for stating
what the URIs used in the RDF data identify in the world, what things in the
world are related through which properties, what value individual (datatype)
literals map to, what existential blank nodes represent, and so forth.

Importantly, the semantics of RDF do not make machines any more aware
of the real world than they are now. The RDF Semantics does not try to
capture the full intended meaning of the RDF data, which may require back-
ground or contextual knowledge, common sense, ability to read natural lan-
guage annotations, or to know what a “Lemon” is and perhaps to have tasted
one, etc. Instead, the aim is to formalize a well-defined subset of the semantics
of RDF data such that it can be leveraged by machines to automate various
tasks: to formalize claims about the world in a well-understood manner that
allows for evaluating the consistency of claims, the necessary entailments of
those claims, and ultimately to evaluate the truth of those claims according
to the theory.

The most important notion arising from the RDF Semantics standard is
the aforementioned notion of entailment, which when given an RDF graph
containing various claims that are held as true, formalizes what other claims
are, as a consequence, also held true (or indeed, false). This provides a founda-
tion for machine-readability, which ultimately avoids the need to redundantly
write down all things that are true, instead letting machines “join the dots”.

Example 6. Take the simple RDF graph containing two claims:

dbr:Lemon dbo:family dbr:Rutaceae .
dbr:Citrus dbo:family dbr:Rutaceae .

This RDF graph trivially entails all of its sub-graphs (i.e., subsets), including
itself. Due to the existential nature of blank nodes, it also entails the following
RDF graph:

[J dbo:family dbr:Rutaceae .
dbr:Lemon dbo:family [] .
dbr:Citrus dbo:family [] .
[0 dbo:family [1 .

This graph states that there is something which has the family dbr :Rutaceae,
that dbr:Lemon and dbr:Citrus have some family, and that there exists a
family relation between some two things. All of these claims are necessarily

22 Linked Data Management: Principles and Techniques

held true if the original two triples are held true. Furthermore, the last triple
of the second graph is entailed by any of the three triples above it, making the
graph non-lean.

The form of entailment illustrated in the previous example—involving ei-
ther sub-graphs or existential blank-nodes—is called simple entailment. Built
on top of simple entailment is RDF entailment. RDF entailment further in-
cludes a couple of straightforward entailments for RDF graphs.

Example 7. Take the following single-triple RDF graph:

[dbr:Lemon dbo:family dbr:Rutaceae . }

This entails:

[dbo:family a rdf:Property .]

In RDF, any term appearing in the predicate position of a triple is interpreted
as refering to a property, an instance of the class rdf :Property.

This example provides semantics for the rdf :Property class in the RDF
vocabulary, and is covered under RDF entailment (but not simple entailment).
Entailments such as these can be automatically realized through use of infer-
ence Tules, which match premises in an RDF graph and use these premises
to derive novel conclusions. An inference rule to support the previous form of
entailment might look like (in Turtle-style syntax):

?s ?7p 70 . = 7p a rdf:Property .

Variables are prefixed with ‘?” and can be matched by any RDF term.” The
left of the rule is called the body (aka. antecedent) of the rule and matches
premises in the graph. The right side of the rule is called the head (aka. conse-
quent) of the rule and provides a template for inferences based on the matched
premises.® In the inference rules for RDF and related standards, variables ap-
pearing in the head of the rule must appear in the body. Every claim or set of
claims matched by the body entail the corresponding consequences produced
by the head (under the same variable substitution).

If entailment is the formal theory on what conclusions can follow from
what premises, then inference can be thought of as the implementation of

"The entailment rules defined for the RDF Semantics documentation restrict what types
of terms some variables can be matched by to ensure the inference of only valid RDF triples,
but this is not an important detail and is overlooked by many implementations that allow
generalized triples—which relax the restrictions on the types of terms allowed in triple
positions—in intermediate inferences.

8In the RDF world, rules are often definite Horn clauses and are typically a syntactic
subset of Datalog (using atoms that apply for RDF triples). Inference rules are sometimes
written in the other direction, with the head first, a left-arrow, and then the body.

Linked Data & the Semantic Web Standards 23

entailment, and as a form of (deductive) reasoning. Henceforth, we primarily
stick with the notion of inference rules to explain the semantics of RDF and
its related standards.’

A foundational element of the semantics of RDF (and the standards lay-
ered on top) is the Open World Assumption, which assumes that data are
incomplete and any information not provided in the local corpus is assumed
to be unknown (rather than false per a Closed World Assumption). In the
previous example, we saw that any term used in the predicate position of a
triple is considered to be a member of the class rdf :Property. If such a term
is not explicitly typed as rdf :Property in the data, this is not problematic:
the data are assumed to be incomplete and the type can be added to help
complete the data. Under an Open World Assumption, the absence of data is
thus not considered problematic and no conclusions can be drawn from the
absence of knowledge. Given the inherent incompleteness of the broader Web,
the Open World Assumption is quite a natural tenet for RDF & Co.

Since the RDF vocabulary is just a foundation and not very expressive—it
does not contain many well-defined terms—RDF entailment in itself is still
pretty boring and not very useful for practical applications.'® However, two
further standards have been created to add additional well-defined vocabulary
for making claims using RDF: the RDF Schema (RDFS) and Web Ountology
Language (OWL) standards. In the following sub-sections, we elaborate fur-
ther upon these two standards.

1.4.2 RDF Schema (RDFS)

In April 1998, the first draft of the RDF Schema (RDFS) specification was
published as a W3C Working Note [14]. The core idea was to extend upon
the RDF vocabulary and allow for attaching semantics to user-defined classes
and properties. The original proposal was to be heavily modified in later ver-
sions; for example, features relating to database-like constraints were dropped
in favour of a specification more explicitly in tune with the Open World As-
sumption. The modern RDFS specification thus became a W3C Recommen-
dation in early 2004 [13] along with the description of the RDF Semantics [29]
discussed thus far. RDFS extends RDF with four key terms [45] that allow
for specifying well-defined relationships between classes and properties:

rdfs:subClass0f (sC) allows for stating that the extension of one class ¢;
(its set of members) is necessarily contained within the extension of
another class c,.

9nference rules are sufficient to support the complete semantics of RDF and RDFS, with
minor exceptions. However, the (two) semantics of OWL are more complex and cannot be
completely supported by a finite set of inference rules alone.

10Aside from instantiating the rdf:Property class, RDF entailment also provides for
interpreting an RDF datatype that represents valid XML strings, which does little to add
to our excitement for RDF entailment by itself.

24 Linked Data Management: Principles and Techniques
TABLE 1.1: A selection of RDF(S) rules (see [29, §7] for all).

Rule ID Body Head

rdfl ?s 7p 7o . = 7p a rdf:Property .
rdfs2 ?p dom 7c . ?x 7p 7y . = 7x rdf:type 7c .
rdfs3 ?p rng ?c . ?x 7p Ty . = 7y rdf:type 7c .
rdfsb ?p1 sP ?p2 . 7p2 sP 7p3 . = 7?p1 sP 7p3 .

rdfs7 ?p1 sP 7p2 . ?x ?p1 %7y . = ?x Tp2 7y .

rdfs9 ?c1 sC 7co . ?x rdf:type ?c; . = 7x rdf:type 7c2 .
rdfsll ?7c; sC ?ca . ?co sC 7c3 . = ?c; sC 7c3 .

rdfs:subProperty0f (sP) allows for stating that all things related by a given
property p; are also necessarily related by another property ps.

rdfs:domain (dom) allows for stating that the subject of a relation with a
given property p is a member of a given class c.

rdfs:range (rng) analogously allows for stating that the object of a relation
with a given property p is a member of a given class c.

The RDFS vocabulary does contain other terms not highlighted here, but
these remaining terms are largely syntactic elements that do not yield par-
ticularly useful entailments. One important term that should be mentioned
however is rdfs:Resource, which refers to the class of all resources in RDFS.
This class can be thought of as the “universal class” containing everything,
including literals, classes, properties—and even itself. Furthermore, the class
rdfs:Class is defined, which refers to the class of all classes (including itself).

This RDFS vocabulary is then formally defined by the RDF Semantics
documents in terms of the RDF model theory, which in turn gives rise to the
notion of RDFS entailment, which is layered on top of RDF entailment, and
which allows for defining a set of RDFS inference rules [29]. A selection of the
most important RDF(S) inference rules are listed in Table 1.1 for reference,
using the shortcuts for RDF'S terms outlined previously; the full list is available

in the RDF Semantics document [29, §7] and supports the complete semantics
of RDFS.!!

Example 8. The following RDF graph:

dbr:Citrus a dbo:FloweringPlant .

dbr:Lemon dbo:genus dbr:Citrus .
dbo:FloweringPlant rdfs:subClass0f dbo:Plant .
dbo:Plant rdfs:subClass0f dbo:Eukaryote .
dbo:genus rdfs:domain dbo:Species .
dbo:Species rdfs:subClassOf owl:Thing .

RDFS-entails (amongst other triples):

HThere are some corner-cases and bugs in the RDF Semantics that lead the inference
rules to be incomplete [45, 58], but these are not important for our purposes.

Linked Data & the Semantic Web Standards 25

dbo:FloweringPlant rdfs:subClass0f dbo:Eukaryote . #rdfsll
dbr:Citrus a dbo:Plant , dbo:Eukaryote . #rdfs9
dbr:Lemon a dbo:Species , owl:Thing . #rdfs2

The comment for each entailed triple denotes a rule from Table 1.1 by which it
can be inferred. First note that domains and ranges do not act as constraints:
although the domain of dbo:genus is defined as dbo:Species, it is not con-
sidered a problem that dbr:Lemon is not stated to be a member of that class,
where instead, it is simply inferred to be a member of that class. Second note
that, as per the final inferred triple, inferences can be applied recursively to
find further valid entailments.

RDFS entailment is layered on top of RDF entailment, which is in turn
layered on top of simple entailment. Another form of entailment specified by
the RDF Semantics document is datatype entailment or D-entailment. The
core purpose of D-entailment is to formalize, for a set of pre-defined datatypes,
a map from lexical strings to the values that they denote: for example, to map
"2.0""xsd:decimal to the value of the number two. D-entailment is most
commonly used in conjunction with XSD datatypes [29, §5].

1.4.3 Web Ontology Language (OWL)

Evolving from earlier proposals for Web ontology languages—such as
that of SHOE [40], DAML [31], OIL [17] and the subsequent hybrid
DAML+OIL [33]—in 2001 the W3C began working on a new ontological
language that would extend upon RDFS with more expressive semantics, en-
abling richer entailment regimes. In 2004, the resulting Web Ontology Lan-
guage (OWL) was recognized as a W3C Recommendation [43]. This was sub-
sequently extended in 2008 by the OWL 2 W3C Recommendation [22].

Relative to RDFS, OWL is a much more complicated standard, with a
deep and colorful background rooted in various competing academic proposals,
resulting in a standard that spans a plethora of W3C documents. It is not
necessary for us to faithfully replicate the complexity of the OWL standard
and its background here. Instead, we focus on a high-level overview, and focus
on details only for pertinent aspects.

Like RDFS, OWL can also be serialized as RDF triples. In fact, OWL
re-uses the core RDFS vocabulary as described in the previous section (with
analogous semantics), but adds a wealth of new vocabulary rooted in a well-
defined semantics. We now summarize a small subset of the novel features

provided by OWL (2).12

owl:equivalentClass (eC) allows for stating that two classes have the same

12The OWL features introduced correspond loosely to the most prominently used features
on the Web of Data [19].

26

owl

owl

owl

owl:

owl

owl

owl:

owl

owl

owl

Linked Data Management: Principles and Techniques

extension (e.g., the classes Human and Person are said to have the same
members).

:disjointWith (dC) allows for stating that the extensions of two classes

have an empty intersection (e.g., the classes Human and Flower cannot
share members).

:equivalentProperty (eP) allows for stating that two properties relate

precisely the same things (e.g., the properties parent0f and hasChild
are said to relate the same resources).

:disjointPropertyWith (dP) allows for stating that two properties can

never relate the same two things (e.g., the properties brother0f and
sister0f cannot relate the same two people in the same direction).

inverse0f (inv) allows for stating that one property relates the same
things as another property, but in the opposite direction (e.g., parent0f
and childOf are said to relate the same resources, but in inverse direc-
tions).

:TransitiveProperty (TP) is a class whereby properties that are a

member specify a transitive relation (e.g., ancestorOf is a transitive
relation where the ancestor of one’s ancestor is also always one’s ances-
tor, and so forth).

:SymmetricProperty (SP) is a class whereby properties that are a mem-

ber specify a symmetric (bidirectional) relation (e.g., sibling0f is sym-
metric since one is always a sibling to one’s sibling).

sameAs (sA) allows for stating that two resources refer to the same thing,
and that the information for one resource applies equally to the other
(useful when two URIs are used in RDF to refer to the same thing).

:differentFrom (dF) allows for stating that two resources necessarily

refer to different things (cannot be in an owl:sameAs relation).

:FunctionalProperty (FP) allows for stating that a subject resource can

only have one value for that property (e.g., hasBiologicalFather since
there can only be one biological father for a person). If a subject resource
has two object values for such a property, those two objects must be
coreferent (i.e., be in an owl:sameAs relation).

:InverseFunctionalProperty (IFP) allows for stating that the value of

a property is unique to the subject of the relation (e.g., isbn values
uniquely identify books, biologicalFatherOf identifies a biological fa-
ther by his child as the inverse of the previous case, and so forth). If two
subjects share the same object for a given inverse-functional property,
those two subjects are coreferent.

Linked Data & the Semantic Web Standards 27
TABLE 1.2: A selection of OWL 2 RDF/RDF rules [24, §4.3].

Rule ID Body Head
eg-sym ?x sA 7y . 7y sA ?x .
eqg-trans ?x sA 7y . 7y sA 7z . 7x sA%z .
eq-rep-s ?s sA 7s’ . ?s ?p 7o . ?s’ 7p 7o .
eq-rep-p 7p sA 7p’ . ?s 7p 7o . ?s 7p’ 7o .
eq-rep-o 70 sA 7o’ . 7s 7p 70 . ?s 7p 70’ .

eqg-diffl ?x sA 7y . ?x dF 7y . FALSE

?x a 7c .
7y a 7c .
?y1 sA ?y2 .
?x1 SA ?xo .
?y ?p 7x .
?x ?p 7z .
?X 7p2 7y .
?X ?p2 7y .
?X ?p1 7y .

prp-dom ?p dom 7c . ?x 7p 7y .

prp-rng ?p rng ?c . 7x 7?p 7y .

prp-fp ?p a FP. ?x ?7p ?y1 , 7y2 .

prp-fp ?p a IFP. ?x1 7p ?y . ?x2 7p 7y .
prp-symp ?p a SP. ?x 7p ?y .

prp-trp pa T TP. ?7x 7p 7y . 7y 7p 7z .
prp-spol ?p1 sP 7p2 . ?x ?p1 %y .

prp-eqpl ?p1 eP ?p2 . 7x 7p1 7y .

prp-eqp2 ?p1 eP ?p2 . ?x 7p2 7y .

prp-pdw ?p1 dP ?p2 . ?x 7p1 Py ; Pp2 7y .

FALSE
prp-invl ?p1 inv ?p2 . ?x 7p1 7y . ?y Tp2 7x .
prp-inv2 ?p1 inv ?p2 . ?x Tp2 7y . ?y 7p1 ?x .
cax-sco ?7c1 sC ?co . ?x a ?cq ?x a 7co .
cax-eqcl ?7c; eC ?co . ?x a ?cy ?x a 7co .
cax-eqc2 ?7c1 eC 7co . ?x a 7co . ?x a 7c1
cax-dw ?7c; dC ?co2 . ?x a ?cy , Pc2 . FALSE

7c1 sC 7c3 .

?7c1 sC?cy . ?cy sC ?cq
?7c1 eC 7co

?p1 sP 7ps .

?p1 sP?p2 . ?p2 sP 7p1
7p1 eC 7p2 .

SCM-sco 7c1 sC 7cy . ?co sC 7c3 .
scm-eqcl ?7c1 eC 7co

scm-eqc2 ?c1 sC ?co . 7cy sC ?cq
scm-spo ?p1 sP 7p2 . 7p2 sP 7p3 .
scm-eqpl ?p1 eP 7p2

scm-eqp2 ?p1 sP ?p2 . 7p2 sP 7p;

S IR R I I 4

An example list of rules corresponding to these OWL (2) features are listed
in Table 1.2 for reference (these are a subset of OWL 2 RL/RDF rules [24],
which will be briefly introduced later). One can also see some overlap with
the RDFS rules presented previously in Table 1.1: as previously stated, OWL
builds on top of parts of the RDF'S vocabulary. Furthermore, the head of some
rules consists of the lone symbol false, which is used to indicate that data
matching the body of the rule in question forms an inconsistency: a logical
contradiction that according to the OWL semantics, indicates a formal error
in the data.

We now give a brief example of one feature of OWL that is frequently used
in RDF data published on the Web: owl:sameAs [19, 26].

Example 9. Again, we take some example data about Citrus from the DB-
pedia exporter:

PREFIXES
@prefix fb: <http://rdf.freebase.com/ns/> .

dbr:Lemon dbo:genus dbr:Citrus .

28 Linked Data Management: Principles and Techniques

dbr:Citrus rdfs:label "Citrus"Qen ;
dbo:family dbr:Rutaceae ;
owl:sameAs fb:en.citrus .

The last triple establishes an owl:sameAs relation to another RDF resource re-
ferring to citrus, published by an external exporter of RDF (Freebase). On the
Freebase site, we can find the following (subset of) information about citrus:

PREFIXES ...

fb:en.citrus fb:scientific_name "Citrus"@en ;
fb:higher_classification fb:en.rutaceae ;
fb:lower_classifications fb:en.lemon ;
fb:lower_classifications fb:en.madarin_orange ;
fb:lower_classifications fb:en.pomelo .

fb:en.pomelo fb:higher_classification fb:en.citrus .

We see two independent exporters on the Web publishing RDF data about
citrus using two different URIs. However, the owl:sameAs link provided by
DBpedia states that the two citrus URIs refer to the same thing. Hence, infor-
mation published about citrus in RDF under one of the URIs also applies to
the other URI (called the principle of replacement). This feature of OWL is
aziomatized by rules eq-* in Table 1.2. Applying these rules, one can see that
taken together, the above two graphs entail:

-
PREFIXES ...

fb:en.citrus owl:sameAs dbr:Citrus .

dbr:Lemon dbo:genus fb:en.citrus .

fb:en.citrus rdfs:label "Citrus"@en ;
dbo:family dbr:Rutaceae ;
owl:sameAs fb:en.citrus .

dbr:Citrus fb:scientific_name "Citrus"@en ;
fb:higher_classification fb:en.rutaceae ;
fb:lower_classifications fb:en.lemon ;
fb:lower_classifications fb:en.madarin_orange ;
fb:lower_classifications fb:en.pomelo .

fb:en.pomelo fb:higher_classification dbr:Citrus .

Thus, the semantics of owl:sameAs can be used to link and combine RDF data
about the same resources from multiple locations.

Unlike RDFS, no finite set of rules can support (either of) the complete
semantics of OWL; hence this ruleset and any such ruleset can only partially
axiomatize (i.e., encode) the semantics of the highlighted subset of features.

On top of all of these features—and a lot more besides those that we
have introduced—OWTL defines two standard and compatible semantics. The
first semantics is called the “RDF-Based Semantics”, which is defined for any

Linked Data & the Semantic Web Standards 29

RDF data and is backwards-compatible with RDF [53]. However, all typical
reasoning tasks over an OWL (2) Full ontology—such as consistency checking,
satisfiability checking (checking if a class can have a member without causing
a logical contradiction), subsumption checking (checking if a class is neces-
sarily a sub-class of another), instance checking (checking if a resource is a
member of a class) and conjunctive query answering (posing complex queries
against the ontology and its entailments)—are undecidable. This means that
such automated tasks cannot be guaranteed to ever terminate for ontologies
described in the unrestricted OWL Full language.

The second semantics, called the “Direct Semantics”, can only interpret
OWL ontologies that abide by certain restrictions. These restrictions are such
that the ontologies described by the language can be translated into azioms
compatible with a formalism called Description Logics (DL). The core aim
of DL is to define a subset of First Order Logic (FOL) for which certain
reasoning tasks are known to be decidable, where the semantics of the language
can be supported in a sound (correct) and complete manner using known
algorithms. However, we already mentioned that inference rules (of the style
we have already introduced) are insufficient to support the semantics of OWL
in a complete manner, where other inference mechanisms are sometimes used.
One popular algorithm in this area is the use of specialized tableau-based
approaches inherited from FOL [52]. Thus, unlike the unrestricted RDF-Based
Semantics, ontologies that conform to the restrictions laid out by the Direct
Semantics have known algorithms for sound and complete reasoning. These
guarantees of sound and complete reasoning are often important in critical
applications, where the possibility of an incorrect or missing answer would not
be acceptable. This introduces a core trade-off of expressivity of the language
(features it supports), versus the efficiency of complete reasoning tasks over
that language. The OWL standards thus define (sub-)languages that can be
interpreted under Direct Semantics and that explore this trade-off.

OWL 1 DL was defined by the original OWL standard to be the maximal
language for which the original version of the Direct Semantics is defined.
For tasks such as consistency checking, satisfiability checking, classifi-
cation, etc., OWL (1) DL is NEXPTIME-complete [24] with respect to
the number of input axioms, which is a very high worst-case complexity.

Conjunctive query answering is not yet known to be (un)decidable for
OWL 1 DL.13

OWL 1 Lite was also defined by the original OWL standard, and aimed
to restrict the use of problematic OWL 1 DL features so as to arrive
at a more “efficient” OWL sub-language. That said, OWL 1 Lite is

13Glimm and Rudolph [21] have proven decidability for conjunctive query entailment
with respect to the Description Logic underlying OWL DL, but under the assumption
that transitive properties (or properties that entail transitive properties) do not appear as
predicates in the query. (They believe that the result extends to OWL 2 DL; they do not
currently address a complexity bound.)

30 Linked Data Management: Principles and Techniques

ExpTIME-complete [24] with respect to input axioms for the previously
mentioned tasks: still a very high complexity.

OWL 2 DL was defined by the OWL 2 standard, and is the maximal lan-
guage for which the updated Direct Semantics of OWL (2) are defined,
adding a lot of new features above and beyond OWL 1 DL. The anal-
ogous complexity of OWL 2 DL is 2NEXPTIME-complete [24]: an ex-
tremely high worst-case complexity. Conjunctive query answering is not
yet known to be (un)decidable for OWL 2 DL.

OWL 2 EL was the first OWL profile to be defined by the OWL 2 standard.
OWL profiles are syntactic subsets of OWL 2 DL for which polynomial-
time algorithms are known for various reasoning tasks. The OWL 2 EL
profile targets support for expressive class axioms, disallowing the use
of certain property axioms: OWL 2 EL is PTIME-complete (determin-
istic polynomial complexity) for all reasoning tasks except conjunctive
query-answering, for which it is PSPACE-complete [24] in a combined
complexity (with respect to assertions, axioms and query size).

OWL 2 QL is the second OWL profile and is aimed at “query-rewriting”
implementations over relational database systems, such that structured
queries are expanded to request asserted data that may entail some sub-
goal of the query. The aforementioned reasoning tasks are NLOGSPACE-
complete with the exception of conjunctive query answering which is
NP-complete (combined complexity).

OWL 2 RL is the third OWL profile and is designed to be supported by
(in particular) rule-based inferencing engines. It is based on previous
proposals to partially support OWL semantics using rules, such as De-
scription Logic Programs (DLP) [25] and pD* [58]. Along these lines,
OWL 2 RL is a syntactic subset of OWL 2 DL with an accompanying
set of OWL 2 RL/RDF entailment rules (some of which are presented
in Table 1.2) such that the entailments possible for OWL 2 RL though
Direct Semantics (often implemented using tableau-based approaches)
are partially aligned with the entailments given by the OWL 2 RL/RDF
rules with respect to the RDF-Based Semantics. OWL 2 RL is PTIME-
complete for all reasoning tasks except conjunctive query-answering, for
which it is NP-complete [24].

Again, OWL is a complex standard and full details are out of scope. For
more information about Description Logics and the underlying formal as-
pects of OWL, we refer the interested reader to Baader et al.’s “Description
Logic Handbook” [3] and also to more recent and more succinct primers by
Rudolph [51] and by Krétzsch [38].

It is sufficient for the purposes of this book to understand that OWL
goes far beyond RDFS and brings a much richer semantics for use with RDF
data, and to have a basic understanding of the semantics for the subset of

Linked Data & the Semantic Web Standards 31

OWL features introduced. Various restricted sub-languages of OWL are de-
fined that allow for guarantees of sound and complete reasoning algorithms,
with a variety of different computational complexities. Furthermore, OWL can
be supported by rules such as those enumerated in Table 1.2, but such rules
can only support a subset of the semantics of OWL in a complete manner.
One well-defined subset of OWL (2) for which rules are “enough” is the OWL
2 RL profile, for which a ruleset called OWL 2 RL/RDF is defined. The OWL
2 RL/RDF ruleset (and its subsets) can be applied over ontologies that fall
outside of OWL 2 RL, and can, for example, provide sound but incomplete
reasoning over OWL 2 Full; this is appealing since OWL 2 RL/RDF rules can
thus be applied directly over arbitrary RDF datasets to derive inferences.

1.5 Querying RDF with SPARQL

The SPARQL standard centers around a query language designed specifi-
cally for RDF data [50], as well as a protocol by which SPARQL queries can
be invoked and their results returned over the Web [15]. The original SPARQL
specification became a W3C Recommendation in 2008 [50]. In 2013, SPARQL
1.1—an extension of the original SPARQL standard—also received W3C Rec-
ommendation [27]. Herein, we focus primarily on the features of the original
SPARQL standard.

SPARQL itself is orthogonal to the RDFS and OWL standards outlined
previously, and is built directly on top of the RDF data-model without direct
support for inferencing (cf. Figure 1.1).'* SPARQL is similar in respects to
the Structured Query Language (SQL) used for querying relational databases,
sharing certain query features and keywords (but in the case of SPARQL,
designed for interacting with RDF data). The RDF-specific syntax of SPARQL
is closely tied with that of Turtle: familiarity with Turtle syntax will greatly
help in understanding SPARQL syntax.

On a high level, a SPARQL query can consist of up to five main parts:

Prefix Declarations allow for defining URI prefixes that can be used for
shortcuts later in the query (in a similar fashion to Turtle).

Dataset Clause allows for specifying a closed partition of the indexed
dataset over which the query should be executed.

Result Clause allows for specifying what type of SPARQL query is being
executed, and (if applicable) what results should be returned.

14]ntegration of RDFS and OWL entailment with SPARQL has recently been standard-
ised alongside SPARQL 1.1 in the form of “SPARQL 1.1 Entailment Regimes” [20]. How-
ever, entailment regimes are not part of the core of the SPARQL 1.1 query language and
are instead an optional standard that can be layered on top.

32 Linked Data Management: Principles and Techniques

Query Clause allows for specifying the query patterns that are matched
against the data and used to generate variable bindings.

Solution Modifiers allow for ordering, slicing and paginating the results.

Example 10. We give a brief ezample of a SPARQL query containing each
of the above five parts. Comment lines are prefived with #’. The query first
defines prefizes that can be re-used later in a similar fashion to that allowed
by Turtle (although prefizes are not terminated with periods in SPARQL).
Next the # DATASET CLAUSE selects partitions of the dataset over which the
query should be run: in this case, an RDF document on the DBpedia site about
lemons. Thereafter, the # RESULT CLAUSE states what kind of results should
be returned for the query: in this case, a unique (i.e., DISTINCT) set of pairs of
RDF terms matching the ?genus and 7order variables respectively. Next, the #
QUERY CLAUSE states the patterns that the query should match against: in this
case, looking up the values for the dbo:genus and dbo:order of dbr:Lemon.
Finally, the # SOLUTION MODIFIER section allows for putting a limit on the
number of results returned, to order results, or to paginate results: in this case,
a mazimum (i.e., LIMIT) of two results is requested from the query.

(# PREFIX DECLARATIONS
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
DATASET CLAUSE
FROM <http://dbpedia.org/data/Lemon.xml>
RESULT CLAUSE
SELECT DISTINCT ?7genus 7order
QUERY CLAUSE
WHERE {

dbr:Lemon dbo:genus 7genus ;

dbo:order 7order .

}
SOLUTION MODIFIER
LIMIT 2
- /)

If one were to assume that the triples:

dbr:Lemon dbo:genus dbr:Citrus ;
dbo:order dbr:Rosids , dbr:Sapindales .

were present in the graph <http://dbpedia.org/data/Lemon.xml> indezred
by the store, we would expect a result like:

?7genus ?family

dbr:Citrus dbr:Sapindales
dbr:Citrus dbr:Rosids

Linked Data & the Semantic Web Standards 33

where the header indicates the variables for which the respective terms are
bound in the results, based on the SELECT clause of the query.

We now detail the function of the latter four parts of a SPARQL query.
Due to the breadth of the SPARQL language, we do not provide examples
for the features introduced, but instead refer the interested reader to the offi-
cial SPARQL documentation where many such examples are introduced [50].
Instead, we give an overview of the different features and outline a common
formalization for SPARQL queries (an extension of that originally proposed
by Pérez et al. [46]), which will be re-used in later chapters of the book.

1.5.1 Query Types
A SPARQL query can be one of four types:

SELECT [DISTINCT |REDUCED]: Requests a list of bindings for variables speci-
fied by a query. By default, the SELECT query will return duplicate results
corresponding directly to the number of unique (RDF) graph patterns
matched by the query in the data. The optional DISTINCT keyword will
enforce unique tuples, removing duplicate results. Another alternative
is to use the REDUCED keyword, which states that duplicates are allowed
but do not need to have the same number of results as per the default
semantics of SELECT, allowing the query engine to optimize accordingly
(and to avoid having to execute a uniqueness check).

ASK: Returns a boolean value indicating whether or not there was a match
in the data for the query clause. An ASK query is roughly the same as
running a SELECT query and seeing if there are non-empty results.

CONSTRUCT: Provides an RDF template into which variables bound in the
query clause can be inserted. When the query is executed, for each re-
sult tuple, variables in the template are bound accordingly generating
(ground) RDF as a result for the query.

DESCRIBE: Asks the endpoint to provide an RDF description for a particular
RDF term. DESCRIBE can also be used to describe bindings to a variable,
where each description is added (by set union) to the query output. The
nature of the description returned for each term is not specified in the
SPARQL standard, and is thus left to the discretion of developers and
administrators. Informally, common types of DESCRIBE functionalities
implemented in practice are:

e return all triples where the term is mentioned in either (i) any
position, (ii) as a subject, or (iii) as a subject or object.

e return some form of Concise Bounded Descriptions (CBD) (please
see [57] for details).

34 Linked Data Management: Principles and Techniques

In the above four types of SPARQL queries, there is an important distinc-
tion to make: the first two return solutions (not RDF), and the latter two
return RDF. RDF can be returned in any appropriate syntax, though RD-
F /XML is required for compliance with the standard. Results for SELECT and
ASK queries are typically serialized in a custom XML syntax defined in the
SPARQL standard [50, § 10], though other result formats based on JSON,
CSV, TSV, etc., are also common.

The result clause of a SPARQL query is the only mandatory part of a
SPARQL query, where “DESCRIBE <someurt>" by itself is a valid SPARQL
query. However, almost all queries will also contain (at least) a query clause.

1.5.2 Dataset Clause and Named Graphs

In Example 10, we hinted at the fact that SPARQL queries are executed
over “partitioned” datasets of RDF, and not over a single monolithic RDF
graph: SPARQL operates over a SPARQL dataset which is composed primar-
ily of named graphs.

Definition 5. A SPARQL named graph is defined as a pair (u,G) where u
is a URI serving as a name for the graph (u € U)'® and G is an RDF graph
(per Definition 3).

A SPARQL dataset is then composed of a default graph, which is an un-
named RDF graph, and a set of named graphs.

Definition 6. A SPARQL dataset D = {GD, (u1,G1),. .., (tn, Gn)} s a set
of (named) graphs where uy ...u, are distinct URIs and Gp,G1,...G, are
RDF graphs. The unnamed graph Gp is called the default graph. Each pair
(u;, G;) is a named graph. We use the notation D(u;) = G; to select a graph
from a dataset based on its name.

A SPARQL dataset is thus composed of a set of RDF graphs that are
named, and a default graph. This allows for querying configurable partitions
of a SPARQL dataset in isolation, using the available URI names to “load”
individual graphs for querying, creating a query-specific SPARQL dataset con-
taining a custom default graph and a selection of named graphs from those
accessible by the query engine. This selection of a dataset is done in the dataset
clause of the query, which can be specified using two optional features:

FROM: The FROM keyword is used to define the default graph for a query-
specific SPARQL dataset. Each FROM keyword is used in combination
with the URI of a named graph. All URIs loaded in this manner will
be added to the default graph for the query, using an RDF merge (see

158trictly speaking, SPARQL is based on IRIs, not URIs, and named graphs use IRIs;
recall from earlier in the chapter that we simplify discussion by referring analogously to
IRIs as URIs.

Linked Data & the Semantic Web Standards 35

Definition 4) to ensure that blank node labels are kept distinct between
source graphs.

FROM NAMED: The FROM NAMED key-phrase is used to define the set of named
graphs that are added to a query-specific SPARQL dataset. Each FROM
NAMED key-phrase is used in combination with the URI of a named graph,
which will be added to the query dataset.

The default graph is the graph against which patterns in the query clause
are matched if no GRAPH clause is explicitly mentioned (referred to later).
For queries without a dataset clause, many SPARQL engines implement a full
default query dataset, containing a default graph with all data that they index
(either the RDF merge or more often the set union of all graphs'®), and all
named graphs loaded: queries without a dataset clause will thus often be run
over all known data. Hence, explicit dataset clauses in queries are typically
used to restrict the dataset by specifying only those graphs over which the
query should be run.'” A minor issue of note: when FROM and/or FROM NAMED
are used, the default graph for the query dataset is initialized as empty.

1.5.3 Query Clause

The query clause is undeniably where the magic happens in a SPARQL
query: based on the selected dataset, it specifies the query patterns and other
criteria that query variables must match to be returned to the other parts of
the query. In this section, we lay out the core features of a query clause, and
formalize these notions following conventions laid out by Pérez et. al [46] and
the SPARQL standard [50, § 12].

The query clause is (almost always) announced using the WHERE keyword,
and is surrounded by opening and closing braces. The core of a query clause
is often one or more sets of triple patterns, where each set is called a basic
graph pattern (BGP). An example of a basic graph pattern was provided in
Example 10 with two triple patterns embedded in a WHERE clause.

Definition 7. Let V denote a set of variables that range over all RDF terms.
An RDF triple pattern tp is an RDF triple where query variables are allowed
in any position: tp € (UUBULUV) x (UUV) x (UUBULUV).'® 4 set
of triple patterns is called a basic graph pattern (BGP).

In RDF triple patterns, blank nodes are considered as existential variables,
meaning that they will not match blank-nodes with the same label, but rather
function as query variables whose bindings cannot be used outside of the

16See http://www.w3.org/TR/sparqlll-service-description/#sd-uniondefaultgraph

17 Negation of graphs is only possible in the query clause, using a combination of GRAPH
and FILTER.

I8SPARQL triple patterns allow literals in the subject to future-proof for a future version
of RDF where such is allowed (no such plans yet exist).

36 Linked Data Management: Principles and Techniques

query clause (and thus that cannot be returned in results). Henceforth, we do
not treat blank nodes in SPARQL query patterns since they can be treated
analogously to non-distinguished query variables: variables that cannot be
used elsewhere outside of the query-clause scope.

Triple patterns can then be executed against RDF graphs to produce a set
of solution mappings'?, such that each mapping applied to the triple pattern
returns a triple present in the RDF graph.

Definition 8. Let p be a solution mapping from a set of variables to RDF
terms: V.— UULUB where V. C V. The set of variables V for which p
is defined is called the domain of p, termed dom(p). We abuse notation and
allow u(tp) to denote a solution mapping for a triple pattern such that p(tp)
uses to replace all variables in tp with RDF terms.

Definition 9. Let G be an RDF graph, let tp be a triple pattern, and let
vars(tp) denote the set of variables in tp. We denote by:

[tplg = {1 | u(tp) € G and dom(y) = vars(tp)}

the execution of the triple pattern tp against G, which returns the set of all
mappings (with minimal domains) that can map tp to a triple contained in G.

A basic graph pattern can then comprise of multiple such triple patterns,
considered as a conjunction: during execution, this conjunction leads to a join
operation over compatible mappings present in the sets of mappings produced
for individual triple patterns.

Definition 10. Two solution mappings u1 and ps are termed compatible—
which we denote by puy ~ ps—if and only if both mappings correspond for the
variables in their overlapping domain. More formally, p1 ~ pe holds if and
only if for all variables v € dom(u1) N dom(ue), it holds that pi(v) = pa(v).
If 1 ~ po, then p U ps remains a valid mapping. Let My and My be a set of
mappings. We define a join over two sets of mappings as:

M <t My = {Nl U g | 1 € Ml,ug € My such that 1 ~ [LQ}

In other words, for each pair of compatible mappings p1 and ps from the
corresponding sets, the join operation adds a new mapping by extending the
bindings of u1 with those from ps (or equivalently, vice-versa,).

Definition 11. Let B = {tp1, ..., tpn} be a basic graph pattern. The execution
of B for a graph G is given as:

[Blg = [tpi]g <. .. < [ton] o

where joins are commutative and associative (and thus can be executed in any

9SPARQL rather defines a sequence of solution mappings since ordering can be important
when solution modifiers are taken into account. However, we leave this implicit for brevity.

Linked Data & the Semantic Web Standards 37

order). If we further abuse notation and allow u(B) to denote the application
of p to all variables in B, we can alternatively state this as:

[Blg = {u| n(B) € G and dom(y) = vars(B)}

which is analogous to Definition 9, but applied for basic graph patterns.

On top of Basic Graph Patterns, SPARQL defines four other core features
that can be used to create complex query patterns in query clauses:

GRAPH: When used with a URI, GRAPH specifies the named graph (from the
query dataset) against which a BGP should be matched. When used
with a variable, GRAPH can be used to bind (or join) the named graph
for which a BGP is matched. A BGP with a surrounding GRAPH clause
cannot access the default graph for the query dataset, only its named
graphs.

UNION: Allows for defining a disjunction of query patterns that the query
should match. The result is the union of the sets of solution mappings
generated for each disjunctive query pattern.

OPTIONAL: Allows for specifying optional query patterns that the query should
try to match. If nothing is matched, instead of applying a conjunction
and removing the solution during execution, variables unique to the
optional pattern are mapped to UNBOUND.

FILTER: Can be used to specify further conditions that a query solution should
match. Conditions can comprise of various operators, built-in functions,
casting operations and boolean connectives, resulting in an expression
that takes a solution mapping as input and returns true or false. If
the expression evaluates to false, the solution mapping is filtered.

e Operators include equality and inequality operators for RDF
terms (including less/greater than for range queries, etc.).

e Built-in functions can be used to transform and examine RDF
terms, including testing the type of an RDF term (is it a URI,
blank-node, literal or is it unbound), parsing functions for literals
(e.g., return language tags or datatype URIs), regex functions, and
so forth.

e Casting operations allow for converting between different types
of datatype literals, or converting URIs to a string, etc.

e Boolean connectives include conjunction (&&), disjunction (]|)
and negation (!), allowing to combine sub-expressions.

e User-defined Functions allow for custom built-ins to be defined
by vendors if not provided by SPARQL.

38 Linked Data Management: Principles and Techniques

As stated at the outset, these features can combine to create a complex
SPARQL query pattern.

Definition 12. A query pattern can be defined recursively as:
e Any basic graph pattern is a query pattern P.

o If P is a query pattern and x is a URI or a variable, then selecting a
graph (P GRAPH x) is also a query pattern.

o If P, and P> are query patterns, then their combination through con-
Junction (Py AND Py), union (P; UNION Py) or optional (Py OPT Py) is
also a query pattern.

e If P is a graph pattern and R is a filter condition as described above,
then (P FILTER R) is also a query pattern. Henceforth, we refer to R
as a function that maps from a solution mapping to a boolean value.

Beyond (inner) joins for conjunctions (Definition 10), the execution of a query
pattern requires one more non-trivial operator over sets of solutions: left-join
(for OPTIONAL).

Definition 13. Let My and My be a set of mappings. Let My, — My denote
the set of all mappings in M7 that have no compatible mapping in My. Then,
the left-join of My and Ms is defined as:

M1:[><]M2 = (Ml l><]M2) U (Ml — Mg)

Compatible mappings between My and Ms are joined (per Definition 10) and
added to the result. Additionally, mappings in My without a compatible map-
ping in My are also preserved in the result (for these latter mappings, variables
unique to My are undefined by the map and result in UNBOUND).

The execution of a SPARQL query pattern can then be defined for a
SPARQL dataset as follows:

Definition 14. Let D be a SPARQL dataset. Let P be a SPARQL query
pattern, per Definition 12. Let G intuitively denote the active graph of D. We
can define the execution of P over D for the active graph G, denoted [P],
recursively as follows:

e if P is a basic graph pattern, then ,[P], = [P], per Definition 11;
e clse if P has the form ...

. P| AND Py, then p[P
. P, UNION Py, then |,
. Py OPT Ps, then [P
. P' FILTER R, then [,

¢ = plPle ™ plP2]es

Plg =plPlg YUplPles:

¢ =plPile > p[P2]q;

Pl ={p e plP]s | R(i) = true};

]
[

]
[

Linked Data & the Semantic Web Standards 39

e else if P has the form P’ GRAPH x, and if ...

-z €U, then p[Plg = p[P1p):
.x €V, then

olPle= | plP g, > {{(z,u)}}.

(ui,Gi)€eD

Slightly abusing notation, we denote by the shortcut [P], = p[P]g, the
execution of a query pattern P against the dataset D. This involves initially
setting the default graph of the dataset Gp as the active graph.

A SPARQL query clause is then composed of a query pattern. Collectively,
these definitions provide a semantics for SPARQL query clauses and how
they are executed over a dataset defined by the dataset clause. The solution
mappings from the query clause can then be further chopped and changed
through solution modifiers (discussed next) before serving as input for the
query type projection/serialization (SELECT, CONSTRUCT, etc.).

1.5.4 Solution Modifiers

For the SELECT, CONSTRUCT and DESCRIBE SPARQL query types, further
options are available to post-process results produced from the query clause
using solution modifiers. Such options are redundant for ASK queries, which
only return a single true | false result. For the moment, we focus on the use of
solution modifiers for SELECT queries, which return a list of solution mappings;
later, we will mention solution modifiers in the context of CONSTRUCT and
DESCRIBE queries, which return RDF.

The following solution modifiers are available for use in SPARQL:

ORDER BY [ASC|DESC]: The ORDER BY clause assigns a list of variables by
which to sort results using SPARQL’s natural ordering over (most) RDF
terms [50, § 9.1].2° Sorting is performed lexicographically based on vari-
able order. The optional ASC and DESC keywords specify whether sorting
for a specific variable should be in ascending or descending order, with
the former being the default.

LIMIT: The LIMIT clause allows for specifying a non-negative integer n, where
n specifies the maximum number of results to return.

OFFSET: The OFFSET clause takes a non-negative integer n and tells the
SPARQL engine to skip over the first n results that would be returned.
In combination with LIMIT, this allows for a form of pagination of re-
sults. However, strictly speaking, OFFSET is only useful in combination

20For example, no ordering is defined between two literals with language tags. This may
lead to implementation-specific side-effects in sorting while not affecting SPARQL compli-
ance.

40 Linked Data Management: Principles and Techniques

with ORDER BY since no default ordering is specified (and furthermore,
the default ordering can be non-deterministic). Hence, if asking for re-
sults 1-10 in a first query and subsequently asking for results 11-20 in
a second query, without ORDER BY there are no guarantees that these
results will be “sequential” or even “disjoint” in the intuitive sense.

The above discussion applies directly to SELECT queries. For CONSTRUCT
and DESCRIBE queries, solution modifiers are used to select the list of solutions
from which RDF will be subsequently generated; note that the ORDER BY clause
on its own has no meaningful effect for such queries since the output will be
an unordered set of RDF triples: however, in combination with LIMIT and
OFFSET, ORDER BY can be used to select a deterministic subset of solutions
with which to generate RDF results.

1.5.5 Towards SPARQL 1.1

We have seen that SPARQL is quite an expressive query language for
RDF, offering a wide range of features including four different query types;
methods to chop and select query-specific datasets using named graph mech-
anisms; a variety of query-pattern features including joins, optional pattern
matching, disjunctive union patterns, and various filter operators; as well as
solution modifiers to shape the final results. Going even further, SPARQL 1.1
was recent standardised [27] and extends SPARQL with a wide-range of new
features. We briefly summarize some of the main novelties.

In terms of the core query language, the following novel features have been
introduced:

Property Paths allow for specifying chains of non-fixed paths in a query
clause using a limited form of regular expressions over RDF predicates.

Aggregates allow for grouping results in such a manner that functions like
max, min, sum, avg, count, etc., can be applied over solutions grouped
by common terms bound to a given set of variables.

Binding Variables enables initializing new variables to, e.g., hold the result
from the execution of a function, or a set of constant terms, etc.

Subqueries allow for nesting sub-SELECT queries, where nested queries are
executed first and the results projected to the outer query. Most impor-
tantly, subqueries allows for non-query clause operators (in particular,
solution modifiers for ordering, limiting and offseting) to be used within
a query clause.

Aside from extensions to the core query language, a few other broader
extensions to the SPARQL standard are also currently on the table:

Entailment [20]: SPARQL does not leverage RDF(S) or OWL Semantics

Linked Data & the Semantic Web Standards 41

when running queries. The SPARQL 1.1 Entailment Regimes proposal
aims to offer optional support for such semantics when running SPARQL
queries, allowing to find additional answers through formal entailment
mechanisms.

Update [18]: In the original SPARQL specification, there was no standard-
ized method by which the content of a SPARQL dataset could be up-
dated. SPARQL 1.1 Update aims to rectify this by providing an update
language (similar in many respects to the query language itself) that
allows for modifying the content of the index, possibly based on the
results of a nested query clause.

Federation [49]: SPARQL federation involves executing a single query over
a selection of SPARQL endpoints. SPARQL 1.1 Federated Query centers
around the SERVICE clause, which can be nested in a SPARQL query
clause and allows for invoking a sub-query against a remote endpoint at
a given URL.

Service Descriptions [60]: To allow for automated discovery of SPARQL
endpoints on the Web and their inherent functionalities, the SPARQL
1.1 Service Descriptions proposal provides a vocabulary to comprehen-
sively describe the features supported by that endpoint. The Service
Description of an endpoint can be retrieved by performing a HTTP
lookup against the endpoint URL requesting content in a suitable RDF
format.

CSV, TSV and JSON outputs [54, 55]: New formats for outputting re-
sults to SPARQL SELECT and ASK queries have been formalized, allowing
for easier integration of SPARQL engines into software applications (by,
e.g., not requiring XML parsers).

SPARQL 1.1 thus represents a significant expansion of the SPARQL set
of standards.

1.6 Linked Data

Thus far we have discussed four of the core Semantic Web standards: RDF,
RDF Schema, the Web Ontology Language, and SPARQL. However, aside
from dropping the occasional reference to things like “URIs” and “URLs”,
and a brief mention of SPARQL protocol, we have spoken very little about
the Web itself. This is mainly because these four standards can be considered
as “languages”, and much like one could discuss HTML without mentioning
HTTP and the Web (except for mentions of the URIs used to link to re-
mote documents and images), one can discuss RDF and RDFS and OWL and

42 Linked Data Management: Principles and Techniques

SPARQL without mentioning HTTP and the Web (except for mentioning the
URIs used to name things and, where applicable, assuming an Open World).
Thus, it may be surprising to learn that the core Semantic Web standards
themselves say precious little about the Web, except for using URIs.

The core aim of Linked Data then, is to provide a set of principles by
which the Semantic Web standards can be effectively deployed on the Web
in a manner that facilitates discovery and interoperability of structured data.
To understand how the core tenets of Linked Data came about, we first give
a little background leading up to the proposal for the Linked Data principles.

1.6.1 The Early Semantic Web on the Web

With regards to publishing RDF on the Web, early efforts produced large,
insular “‘data silos”, often a dump of potentially huge RDF documents. Such
silos included OpenCyc comprising of axioms specifying general knowledge?!,
the GALEN ontology for describing medical terminology??, exports from
UniProt describing protein sequences??, and exports from the WordNet lexi-
cal database?*. Although such dumps have their own inherent value and are
published in an interoperable data-model through RDF, they rarely interlink
with remote data (if at all) and they are published using different conventions
(e.g., in a Web folder, using different archiving methods, etc.) thus making
them difficult to discover automatically. Effectively, such dumps are isolated
islands of data that only use the Web for file transfer.

One notable exception to the emerging RDF silos was the publishing cen-
tered around the Friend Of A Friend (FOAF) community. In early 2000, Brick-
ley and Miller started the “RDF Web Ring” project (or simply “RDFWeb”)
which was eventually rebranded as FOAF.25 FOAF provides a lightweight vo-
cabulary containing various terms for describing people; initially comprising
of a set of RDF properties, this vocabulary evolved throughout the years to
include RDFS and OWL descriptions of properties and classes, continuously
adapting to community feedback and requirements. Various tools solidified
adoption of the FOAF vocabulary, including the 2004 FOAF-a-Matic genera-
tor, which allowed users to fill some personal details into a form to generate a
FOAF profile (an RDF document on the Web describing them) and to link to
the FOAF profiles of their friends. FOAF profiles were deployed by Semantic
Web enthusiasts, with more adventurous adopters creating ad-hoc vocabular-
ies to extend the personal details contained within, and so an early Web of
Data—a Web of Semantic Web documents—formed [16].

However, early FOAF data—and RDF data in general-—made sparse use

2Ihttp://waw.cyc.com/2004/06/04/cyc; retr. 2012/11/30

22h1:‘!:p ://www.co-ode.org/galen/full-galen.owl; retr. 2012/ 1 1/30

23http://waw.uniprot.org/; retr. 2010/11/30

24http://1lists.w3.org/Archives/Public/wiw-rdf-interest/2001Feb/0010.html; dataset now of-
fline

25http://www.foaf-project.org/original-intro; retr. 2010/11/02

Linked Data & the Semantic Web Standards 43

of URIs, preferring to use blank nodes.2® Thus, consistent URI naming across
documents was not even attempted, and there was no direct means of find-
ing information about a given resource. As more and more RDF data were
published on the Web and more and more RDFS and OWL vocabularies be-
came available, there was an eminent need in the community for a set of best
practices. The first notable step in this direction was the publication in March
2006 of a W3C Working Note entitled “Best Practice Recipes for Publishing
RDF Vocabularies” [44], which described URI naming schemes for vocabulary
terms, and the HTTP mechanisms that should be used to return information
upon lookup of those URISs (called dereferencing). These best practices aligned
with the then recent Web Architecture W3C Recommendation [34] and with
practices already used by, for example, the FOAF vocabulary. Similar rec-
ommendations were then generalized and broadened for arbitrary RDF data,
leading to the Linked Data principles and best practices.

1.6.2 Linked Data Principles and Best Practices

In July 2006, Berners-Lee published the initial W3C Design Issues docu-
ment outlining Linked Data principles, rationale and some examples [7]. This
document generalized the earlier best-practices for vocabularies, similarly es-
pousing use of dereferenceable HTTP URIs for naming, and additionally en-
couraging inclusion of external URIs as a simple form of linking. The four
Linked Data principles are as follows (paraphrasing Berners-Lee [7]):

1. use URIs as names for things;

2. use HT'TP URIs so those names can be looked up (aka. dereferencing);

w

. return useful information upon lookup of those URIs (esp. RDF);

e

include links by using URIs which dereference to remote documents.

The result can be conceptualized as a Web of Data, where URIs identify things,
dereferencing URIs (through HTTP) returns structured data (RDF) about
those things, and that structured information is inherently composed of related
URIs that constitute links to other sources enabling further discovery.?”

The central novelty of Linked Data when compared with traditional Se-
mantic Web publishing was the emphasis on using dereferenceable URIs to
name things in RDF. With data published under the Linked Data principles,

26With a couple of exceptions: for example, in 1999, Brickley had already begun ex-
periments with respect to publishing WordNet as RDF on the Web in a manner anal-
ogous to modern Linked Data. See discussion at http://lists.w3.org/Archives/Public/
wuw-rdf-interest/2001Feb/0010.html; retr. 2013/06/14 (and with thanks to the anonymous
reviewer who pointed this out).

27We note that the term “Web of Data” is a contentious one. In particular, opinions differ
on whether RDF and Semantic Web technologies are integral to such a Web of Data, or are
simply one direction to pursue. However, the phrase “web of data” was used in the explicit
context of the Semantic Web as early as 1998 by Berners-Lee [6].

44 Linked Data Management: Principles and Techniques

to find out more information about the resource identified by a particular
URI, you could look it up through HTTP using content-negotiation methods
requesting RDF data and expect to find a document describing that resource.

Example 11. The data used in our running example thus far is sourced from
a Linked Data exporter called DBpedia. The URLs of the documents from
which these RDF data are retrieved are provided as comments (prefizes are
omitted for brevity):

http://dbpedia.org/data/Lemon.xml| |# http://dbpedia.org/data/Citrus.xml

dbr:Lemon rdfs:label "Lemon"@en ; dbr:Citrus rdfs:label "Citrus"Qen ;
dbp:calciumMg 26 ; dbo:family dbr:Rutaceae ,
dbo:genus dbr:Citrus ; dbr:Aurantioideae ;

An agent encountering the document about dbr:Lemon on the left will dis-
cover that its genus is dbr:Citrus. However, no further information about
the resource identified by dbr:Citrus is awvailable in that document. In-
stead, by looking up the URI using appropriate content-negotiation (deref-
erencing), the agent can retrieve the document on the right, discovering an
RDF description of the resource identified by dbr:Citrus. Analogously, look-
ing up dbr:Lemon will return the document on the left. Other URIs such as
rdfs:label, dbp:calciumMg, dbr:Rutaceae, etc. can also be looked up to
retrieve RDF descriptions, thus providing links to other remote documents.

The core message of the Linked Data community is, in essence, a bottom-
up approach to bootstrapping Semantic Web publishing, where the emphasis
is not on languages, but rather on publishing and linking structured data on
the Web in a manner that facilitates interoperability. This bottom-up phi-
losophy is best epitomized by the (Linked) Open Data “5 Star Scheme” [7],
summarized as follows:

* PUBLISH DATA ON THE WEB UNDER AN OPEN LICENSE
* % PUBLISH STRUCTURED DATA
* % * USE NON-PROPRIETARY FORMATS
* % x % USE URIS TO IDENTIFY THINGS
* % % * % LINK YOUR DATA TO OTHER DATA

Here, each additional star is promoted as increasing the potential reusability
and interoperability of the publishers’ data. Although the final star does not
explicitly mention publishing through RDF, its use is (often understood to
be) implied given a lack of viable alternative structured formats where URIs
are used as identifiers and links can thus be embedded in the content.

Linked Data & the Semantic Web Standards 45

1.6.3 Linking Open Data

Promoting Linked Data principles, the W3C announced a new Community
Project called “Interlinking Open Data”—subsequently shortened to “Link-
ing Open Data” (LOD)—inspired by the growth in Open Data published on
the Web under liberal licenses. The goal of the Linked Open Data project is
twofold: (i) to introduce the benefits of RDF and Semantic Web technologies
to the Open Data movement, (ii) to bootstrap the Web of Data by creating,
publishing and interlinking RDF exports from these open datasets [30].

Furthermore, the community set about developing and promoting an ex-
tended set of Linked Data publishing guidelines on top of the core principles
outlined previously. The full set of publishing guidelines are out of scope,
where we instead refer the interested reader to Heath and Bizer’s recent book
on the topic [30]. Herein, we summarize some of the main guidelines:

Dereferencing practices: In RDF, URIs can be used to identify anything,
not just documents. Linked Data guidelines thus recommend a level of
indirection to signify this distinction on a HTTP level, using either frag-
ment identifiers or 303 See Other redirects to associate a resource URI
to a document about it (as opposed to a document it identifies or ad-
dresses). Furthermore, recipes have been proposed for handling content
negotiation such that when dereferencing a URI, clients can request RDF
in a suitable format using HTTP Accept headers. Finally, the guidelines
recommend providing as full an RDF description as possible about a re-
source upon dereferencing, particularly locally available triples where
that resource is mentioned in the subject or object position.

Linking Aliases: On the Web, it is common practice for multiple publishers
to speak about the same entities in different locations. One option to
support the interoperability of data overlapping in this manner would be
to use consistent URISs to refer to the same thing, allowing contributions
from the different parties to be merged about the entities in question.
However, if there were only one URI for, e.g., Citrus on the Web, that
URI could only dereference to one document in one location. Hence,
Linked Data guidelines (and the Semantic Web standards) allow for the
use of multiple URI aliases that refer to the same thing. Subsequently,
Linked Data guidelines recommend using owl:sameAs links to specify
that a remote location speaks about the same resource using an alter-
native identifier (see Example 9 for a real-life example of aliases linked
across two Linked Data publishers: DBpedia and Freebase).

Describing Vocabularies Terms: In Section 1.4, we gave a summary of
the semantics of RDF and how standards such as RDFS and OWL
can be used to unambiguously define the meaning of terms, particularly
classes and properties. Linked Data guidelines recommend the shared
use of common vocabularies of class and property terms (including, e.g.,

46 Linked Data Management: Principles and Techniques

FOAF for information about people). The semantics of these vocabular-
ies can be described in RDF using the RDFS and OWL languages, and
can be mapped to related vocabularies, where these descriptions can be
dereferenced by looking up the URI of the term (see Example 8 on how
the semantics of RDFS terms enables automated inference).

Provision of SPARQL Endpoints: Linked Data guidelines do not require
publishers to provide SPARQL endpoints over their content: derefer-
enceable documents are sufficient to constitute Linked Data. However,
the provision of a SPARQL endpoint for a given Linked Data site gives
consumers a single-point-of-access to the merge of contributions on that
site. Furthermore, SPARQL engines are often used to dynamically gen-
erate dereferenced documents for consumers. Hence, public SPARQL
endpoints are often provided by Linked Data publishers alongside deref-
erenceable RDF' documents.

The Linking Open Data community has been successful in engaging with
publishers of Open Data and encouraging them to follow Linked Data prin-
ciples and related best-practices. Publishers of Linked Data now include such
household names as the BBC, the New York Times, Sears, Freebase (owned
by Google), the UK government, and so forth, making data described using
Semantic Web standards openly available on the Web.

To keep track of the growth in published datasets made available as Linked
Data, in 2007, Cyganiak and Jentzsch first began collating the “Linking Open
Data cloud diagram” (or “LOD cloud” for short). The most recent version
of the diagram is depicted in Figure 1.2: each node represents a composite
dataset, with directed edges indicating links between datasets. For a dataset
to be eligible for the diagram, it must use dereferenceable URIs that resolve
to RDF documents, it must contain at least one thousand triples, and it must
contain at least fifty links to an external dataset. The cloud depicted contains
a total of 295 such datasets. The size of each node indicates the number of
triples that the dataset contains, varying from less than ten thousand RDF
triples for the smallest nodes to over one billion triples for the largest nodes. At
the center of the diagram is DBpedia, which “mints” a dereferenceable URI
for every entity described by its own Wikipedia article and offers an RDF
description thereof, publishing an aggregate total of 1.89 billion triples about
20.8 million entities (extracted from multi-lingual versions of Wikipedia).

The colors of the diagram indicate different high-level domains under which
the datasets fall: media, geographic, publications, user-generated content, gov-
ernment, cross-domain and life sciences. These are domains within which there
has traditionally been an emphasis on publishing Open Data: for example, gov-
ernmental organizations are interested in Open Data to increase transparency
and allow developers to combine and build services over public-domain knowl-
edge (e.g., census data, traffic levels, pollution, etc.) for the benefit of citizens;
within the life sciences, the field of bioinformatics is struggling with colossal
amounts of raw data on genomes, diseases, drugs, etc., coming from a variety

Linked Data & the Semantic Web Standards 47

of sources; and so forth. Aside from these specialized domains, there is also
a wealth of more general-interest datasets in the cross-domain, media and
user-generated content categorizations.

And so we now we have the first real foundations for a true Web of Data,
composed of a wide selection of datasets described using a common formal
structure (RDF), defined using extensible vocabularies founded on formal lan-
guages with well-defined semantics (RDFS and OWL), all published openly
on the Web and interlinked to allow for automated discovery and navigation
of related information, with many datasets indexed in engines that provide a
standard, flexible query functionality (SPARQL).%® Although some may ar-
gue that this Web of Data is still a long way off the intangible Semantic Web
promised in years gone by (as described in Section 1.2 and epitomized by the
layer cake), it inarguably represents the first tangible deployment of Semantic
Web standards on the Web itself.

But the war is far from won: although the Web infrastructure has proven
successful in being able to host this massive new publishing initiative, the chal-
lenges faced when consuming this Web of Data—when harnessing its content
for the purposes of building applications—are only now becoming clear. In
particular, querying this novel Web of Data requires new techniques and new
ways of thinking forged upon the expertise collected in related areas such as
databases, distributed computing and information retrieval. The rest of this
book focuses on these core challenges—challenges that must be addressed be-
fore the true potential of this fledgling Web of Data can (finally) be unlocked.

CHAPTER ACKNOWLEDGEMENTS: The author of this chapter was funded
in part by the Millennium Nucleus Center for Semantic Web Research
under Grant NC120004, by Science Foundation Ireland under Grant No.
SFI/08/CE/11380 (Lion-2) and Grant No. SFI/12/RC/2289 (INSIGHT). I'd
also like to thank the anonymous reviewer whose comments helped improve this
chapter.

28 A total of 201 datasets (68%) claim to offer access to a SPARQL endpoint: http://
wifo5-03.informatik.uni-mannheim.de/lodcloud/state/; retr. 2012/12/02.

Linked Data Management: Principles and Techniques

48

s
st
an-
Open
Library
fiymou
eadin

7

W "
3 b\\ <17
,.\,
V ...'.1“\\‘

] <
> ~
!@/Jtz ._wwe\
(L3S;

I e}.«w it

gm vb...-
m. !

US Census
(rdfabout)

Media O
ceograpnic ()
Publications O
User-generated content MU

covernment ()
Chem2 Cross-domain O

,m
=
2
Bio2RDF
0GOLOD o "

As of September 2011 © ® @

FIGURE 1.2: Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

Bibliography

[1]

Ben Adida, Mark Birbeck, Shane McCarron, and Ivan Herman. RDFa
Core 1.1. W3C Recommendation, June 2012. http://www.w3.org/TR/
rdfa-syntax/.

Ben Adida, Mark Birbeck, Shane McCarron, and Steven Pemberton.
RDFa in XHTML: Syntax and Processing. W3C Recommendation, Oc-
tober 2008. nttp://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/.

Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider. The Description Logic Handbook: Theory,
Implementation and Application. Cambridge University Press, 2002.

Dave Beckett. RDF /XML Syntax Specification (Revised). W3C Recom-
mendation, February 2004. http://www.u3.org/TR/rdf-syntax-grammar/.

David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin
Carothers. Turtle: Terse RDF Triple Language. W3C Working Draft,
July 2012. nttp://www.w3.org/TR/turtle/.

Tim Berners-Lee. Semantic Web Road map. W3C Design Issues, Septem-
ber 1998. nttp://www.w3.org/DesignIssues/Semantic.html.

Tim Berners-Lee. Linked Data. W3C Design Issues, July 2006. http:
//www.w3.org/DesignIssues/LinkedData.html.

Tim Berners-Lee and Dan Connolly. Notation3 (N3): A readable
RDF syntax. W3C Team Submission, March 2011. http://www.w3.org/

TeamSubmission/n3/.

Tim Berners-Lee, Jim Hendler, and Ora Lassila. The Semantic Web.
Scientific American, 5(284):35-40, 2001.

Diego Berrueta and Jon Phipps. Best Practice Recipes for Publishing
RDF Vocabularies. W3C Working Group Note, August 2008. http://wwu.
w3.org/TR/swbp-vocab-pub/.

Mark Birbeck and Shane McCarron. CURIE Syntax 1.0: A syntax for
expressing Compact URIs. W3C Working Group Note, December 2010.
http://www.w3.org/TR/curie/.

49

50

[12]

[15]

[16]

[17]

[18]

[19]

Linked Data Management: Principles and Techniques

Christian Bizer, Jens Lehmann, Georgi Kobilarov, Séren Auer, Chris-
tian Becker, Richard Cyganiak, and Sebastian Hellmann. DBpedia — a
crystallization point for the Web of Data. J. Web Sem., 7(3):154-165,
20009.

Dan Brickley and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, February 2004. nttp://www.
w3.org/TR/rdf-schema/.

Dan Brickley, R.V. Guha, and Andrew Layman. Resource Description
Framework (RDF) Schemas. W3C Recommendation, April 1998. http:
//www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL Pro-
tocol for RDF. W3C Recommendation, January 2008. http://www.w3.org/
TR/rdf-sparql-protocol/.

Li Ding and Tim Finin. Characterizing the Semantic Web on the Web.
In Isabel F. Cruz, Stefan Decker, Dean Allemang, Chris Preist, Daniel
Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo, editors, Interna-
tional Semantic Web Conference, volume 4273 of Lecture Notes in Com-
puter Science, pages 242-257. Springer, 2006.

Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuin-
ness, and Peter F. Patel-Schneider. OIL: An ontology infrastructure for
the Semantic Web. IEEE Intelligent Systems, 16(2):38-45, 2001.

Paul Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1
Update. W3C Recommendation, March 2013. http://www.w3.org/TR/
sparqlil-update/.

Birte Glimm, Aidan Hogan, Markus Krétzsch, and Axel Polleres. OWL:
Yet to arrive on the Web of Data? In Christian Bizer, Tom Heath, Tim
Berners-Lee, and Michael Hausenblas, editors, LDOW, volume 937 of
CEUR Workshop Proceedings. CEUR-WS.org, 2012.

Birte Glimm and Chimezie Ogbuji. SPARQL 1.1 Entailment Regimes.
W3C Candidate Recommendation, March 2013. nttp://www.w3.org/TR/
sparqglil-entailment/.

Birte Glimm and Sebastian Rudolph. Status QIO: Conjunctive query
entailment is decidable. In Fangzhen Lin, Ulrike Sattler, and Miroslaw
Truszczynski, editors, KR. AAAT Press, 2010.

Christine Golbreich and Evan K. Wallace. OWL 2 Web Ontology Lan-
guage: New Features and Rationale. W3C Recommendation, October
2009. nhttp://wuw.w3.org/TR/owl2-new-features/.

Jan Grant and Dave Beckett. RDF Test Cases. W3C Recommendation,
February 2004. nttp://www.w3.org/TR/rdf-testcases/.

[24]

[35]

Linked Data & the Semantic Web Standards 51

Bernardo Cuenca Grau, Boris Motik, Zhe Wu, Achille Fokoue, and
Carsten Lutz. OWL 2 Web Ontology Language: Profiles. W3C Rec-
ommendation, October 2009. http://www.w3.org/TR/owl2-profiles/.

Benjamin N. Grosof, lan Horrocks, Raphael Volz, and Stefan Decker.
Description logic programs: combining logic programs with description
logic. In WWW, pages 48-57, 2003.

Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L. McGuin-
ness, and Henry S. Thompson. When owl:sameAs isn’t the same: An anal-
ysis of identity in Linked Data. In Peter F. Patel-Schneider, Yue Pan,
Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and
Birte Glimm, editors, International Semantic Web Conference (1), vol-
ume 6496 of Lecture Notes in Computer Science, pages 305-320. Springer,
2010.

Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C
Recommendation, March 2013. nttp://www.w3.org/TR/sparqlii-query/

Jonathan Hayes and Claudio Gutiérrez. Bipartite graphs as intermediate
model for RDF. In Sheila A. Mcllraith, Dimitris Plexousakis, and Frank
van Harmelen, editors, International Semantic Web Conference, volume
3298 of Lecture Notes in Computer Science, pages 47-61. Springer, 2004.

Patrick Hayes. RDF Semantics. W3C Recommendation, February 2004.
http://www.w3.org/TR/rdf-mt/.

Tom Heath and Christian Bizer. Linked Data: Fvolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web. Morgan &
Claypool Publishers, 2011.

James Hendler and Deborah L. McGuinness. The DARPA Agent Markup
Language. IEEE Intelligent Systems, 15(6):67-73, 2000.

Tan Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML. W3C Member Submission, May 2004.
http://www.w3.org/Submission/SWRL/.

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. Re-
viewing the design of DAML~+OIL: An ontology language for the Seman-
tic Web. In AAAI/TAAI pages 792-797, 2002.

Ian Jacobs and Norman Walsh. Architecture of the World Wide Web,
Volume One. W3C Recommendation, December 2004. http://www.w3.org/
TR/webarch/.

Ilianna Kollia, Birte Glimm, and Ian Horrocks. SPARQL query answering
over OWL ontologies. In Grigoris Antoniou, Marko Grobelnik, Elena

92

[45]

[46]

Linked Data Management: Principles and Techniques

Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De
Leenheer, and Jeff Z. Pan, editors, ESWC (1), volume 6643 of Lecture
Notes in Computer Science, pages 382-396. Springer, 2011.

Markus Krotzsch, Frederick Maier, Adila Krisnadhi, and Pascal Hitzler.
A better uncle for OWL: nominal schemas for integrating rules and on-
tologies. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar,
M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, WWW, pages
645-654. ACM, 2011.

Markus Krotzsch, Sebastian Rudolph, and Pascal Hitzler. Description
Logic Rules. In Malik Ghallab, Constantine D. Spyropoulos, Nikos Fako-
takis, and Nikolaos M. Avouris, editors, FCAI volume 178 of Frontiers
in Artificial Intelligence and Applications, pages 80-84. 10S Press, 2008.

Markus Krotzsch, Frantisek Simancik, and Ian Horrocks. A Description
Logic Primer. CoRR, abs/1201.4089, 2012.

Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF)
Model and Syntax Specification. W3C Recommendation, February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

Sean Luke, Lee Spector, David Rager, and James A. Hendler. Ontology-
based Web Agents. In Agents, pages 59-66, 1997.

Alejandro Mallea, Marcelo Arenas, Aidan Hogan, and Axel Polleres. On
blank nodes. In Lora Aroyo, Chris Welty, Harith Alani, Jamie Tay-
lor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva
Blomgqvist, editors, International Semantic Web Conference (1), volume
7031 of Lecture Notes in Computer Science, pages 421-437. Springer,
2011.

Frank Manola and Eric Miller. RDF Primer. W3C Recommendation,
February 2004. nttp://www.u3.org/TR/rdf-primer/.

Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology
Language Overview. W3C Recommendation, February 2004. http://wwu.
w3.org/TR/owl-features/.

Alistair Miles, Thomas Baker, and Ralph Swick. Best Practice Recipes for
Publishing RDF Vocabularies. W3C Working Draft, March 2006. nttp://
www.w3. org/TR/2006/WD-swbp-vocab-pub-20060314/ (Later superseded by [10]).

Sergio Munoz, Jorge Pérez, and Claudio Gutierrez. Simple and efficient
minimal RDFS. J. Web Sem., 7(3):220-234, 2009.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of SPARQL. ACM Trans. Database Syst., 34(3), 2009.

[47]

Linked Data & the Semantic Web Standards 53

Axel Polleres. From SPARQL to rules (and back). In Carey L.
Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and Prashant J.
Shenoy, editors, WWW, pages 787-796. ACM, 2007.

Axel Polleres. How (well) do Datalog, SPARQL and RIF interplay? In
Pablo Barcel6 and Reinhard Pichler, editors, Datalog, volume 7494 of
Lecture Notes in Computer Science, pages 27-30. Springer, 2012.

Eric Prud’hommeaux and Carlos Buil-Aranda. SPARQL 1.1 Feder-
ated Query. W3C Recommendation, March 2013. http://www.u3.org/TR/
sparqlll-federated-query/.

Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. W3C Recommendation, January 2008. http://www.w3.org/TR/
rdf-sparql-query/.

Sebastian Rudolph. Foundations of Description Logics. In Axel Polleres,
Claudia d’Amato, Marcelo Arenas, Siegfried Handschuh, Paula Kro-
ner, Sascha Ossowski, and Peter F. Patel-Schneider, editors, Reasoning
Web, volume 6848 of Lecture Notes in Computer Science, pages 76-136.
Springer, 2011.

Manfred Schmidt-Schaufl and Gert Smolka. Attributive concept descrip-
tions with complements. Artif. Intell., 48(1):1-26, 1991.

Michael Schneider. OWL 2 Web Ontology Language RDF-Based Se-
mantics. W3C Recommendation, October 2009. http://www.w3.org/TR/

owl2-rdf-based-semantics/.

Andy Seaborne. SPARQL 1.1 Query Results CSV and TSV For-
mats. W3C Recommendation, March 2013. http://www.w3.org/TR/

sparqlil-results-csv-tsv/.

Andy Seaborne. SPARQL 1.1 Query Results JSON Format. W3C Rec-
ommendation, March 2013. http://www.w3.org/TR/sparqlil-results-json/.

Manu Sporny. JSON-LD Syntax 1.0. W3C Last Call Working Draft,
April 2013. http://www.w3.org/TR/json-1d-syntax/.

Patrick Stickler. CBD — Concise Bounded Description. W3C Recommen-
dation, June 2005. http://www.w3.org/Submission/CBD/.

Herman J. ter Horst. Completeness, decidability and complexity of en-
tailment for RDF Schema and a semantic extension involving the OWL
vocabulary. J. Web Sem., 3(2-3):79-115, 2005.

Denny Vrandecic, Markus Krotzsch, Sebastian Rudolph, and Uta Losch.
Leveraging non-lexical knowledge for the Linked Open Data Web. Review
of April Fool’s day Transactions (RAFT), 5:18-27, 2010.

54 Linked Data Management: Principles and Techniques

[60] Gregory Todd Williams. SPARQL 1.1 Service Description.
W3C Recommendation, March 2013. http://www.w3.org/TR/

sparqglil-service-description/.

[61] David Wood, Stefan Decker, and Ivan Herman, editors. Proceedings of
the W8C Workshop — RDF Next Steps, Stanford, Palo Alto, CA, USA,
June 26-27. Online at http://www.w3.org/2009/12/rdf-ws/, 2010.

