
Scalable and Distributed Methods for Resolving, Consolidating,

Matching and Disambiguating Entities in Linked Data Corpora 1

Aidan Hogan a, Antoine Zimmermann a, Jürgen Umbrich a, Axel Polleres a, Stefan Decker a,

aDigital Enterprise Research Institute, National University of Ireland, Galway

Abstract

Under review: please do not distribute link or text!

With respect to large-scale, static, Linked Data corpora, in this paper we discuss scalable and distributed methods for: (i) entity

consolidation—identifying entities which signify the same referent, aka. smushing, entity resolution, object consolidation, etc.—

using explicit owl:sameAs relations; (ii) extended entity consolidation based on a subset of OWL 2 RL/RDF rules—particularly

over inverse-functional properties, functional-properties and (max-)cardinality restrictions with value one; (iii) deriving weighted

concurrence measures between entities in the corpus based on shared inlinks/outlinks and attribute values using statistical

analyses; (iv) disambiguating (initially) consolidated entities based on inconsistency detection using OWL 2 RL/RDF rules. Our

methods are based upon distributed sorts and scans of the corpus, where we purposefully avoid the requirement for indexing all

data. Throughout, we offer evaluation over a diverse Linked Data corpus consisting of 1.118 billion quadruples derived from a

domain-agnostic, open crawl of 3.985 million RDF/XML Web documents, demonstrating the feasibility of our methods at that

scale, and giving insights into the fecundity of the approach and the quality of the results.

Key words: entity consolidation, web data, linked data, rdf

1. Introduction

Over a decade since the inception of the Semantic

Web, RDF publishing has finally found some traction

through adoption of Linked Data best practices as fol-

lows:

(i) use URIs as names for things (and not just docu-

ments);

Email addresses: aidan.hogan@deri.org (Aidan Hogan),

antoine.zimmermann@deri.org (Antoine Zimmermann),

juergen.umbrich@deri.org (Jürgen Umbrich),

axel.polleres@deri.org (Axel Polleres),

stefan.decker@deri.org (Stefan Decker).
1 The work presented in this paper has been funded in part by

Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-

2) and by an IRCSET postgraduate scholarship. Please note that we

make our results available for review at http://swse.deri.

org/entity/.

(ii) make those URIs dereferencable via HTTP;

(iii) return useful and relevant RDF content upon

lookup of those URIs;

(iv) include links to other datasets.

The Linked Open Data project has advocated the tan-

gible goal of providing dereferencable machine read-

able data in a common format (RDF), with emphasis

on the re-use of URIs and inter-linkage between remote

datasets—in so doing, the project has overseen exports

from corporate entities (e.g., the BBC, BestBuy, Free-

base), governmental bodies (e.g., the UK Government,

the US government), existing structured datasets (e.g.,

DBPedia), social networking sites (e.g., flickr, Twit-

ter, livejournal), academic communities (e.g., DBLP,

UniProt), as well as esoteric exports (e.g., Linked Open

Numbers, Poképédia). This burgeoning web of struc-

tured data has succinctly been dubbed the “Web of

Preprint submitted to Elsevier 15/08/09

Data”. 2

Considering the merge of these structured exports, at

a conservative estimate there now exists somewhere in

the order of tens of billions of RDF triples published on

the Web; 3 however, these individual datasets are not

well-interlinked 4 (cf. [52])—without sufficient linkage,

the ideal of a “Web of Data” quickly disintegrates into

the current reality of “Archipelagos of Datasets”.

There has been numerous works which have looked

at bridging the archipelagos. Some works aim at align-

ing a small number of related datasets (e.g., [34,42,35]),

thus focussing more-so on theoretical considerations

than scalability, usually combining symbolic (e.g., rea-

soning with consistency checking) methods and similar-

ity measures. Some authors have looked at inter-linkage

of domain specific RDF datasets at various degrees

of scale (e.g., [45,43,27,39,32]). Further research has

also looked at exploiting shared terminological data—

as well as explicitly asserted links—to better integrate

Linked Data collected from thousands or millions of

sources (e.g., [22,36,8]); the work presented herein falls

most closely into this category. One approach has tack-

led the problem from the publishers side, detailing a

system for manually specifying some (possibly heuris-

tic) criteria for creating links between two datasets [52].

We leave further detailed related work to Section 9.

In this paper, we look at methods to provide better

linkage between resources, in particular focussing on

finding equivalent entities in the data: our notion of an

entity is a reference for some individual or thing being

described by the data—e.g., a person, a place, a musi-

cian, a protein, etc; we say that two entities are equiva-

lent if they are coreferent—e.g., refer to the same per-

son, place, etc. 5 Given a collection of datasets which

speak about the same referents using different identi-

fiers, we wish to identify these coreferences and some-

how merge the knowledge contribution provided by the

distinct parties.

In particular, our work is inspired by the require-

ments of the Semantic Web Search Engine project [24],

within which we aim to offer search and browsing over

2 See http://linkeddata.org/ for Cyganiak and Jentzsch’s

most current ‘map’ of the Linked Open Data cloud; however—and

as the Linked Open Numbers project (see [53, Figure 1]) has dryly

evinced—not all of this current Web of Data is entirely “compelling”.
3 http://esw.w3.org/TaskForces/

CommunityProjects/LinkingOpenData/DataSets/

Statistics
4 http://esw.w3.org/TaskForces/

CommunityProjects/LinkingOpenData/DataSets/

LinkStatistics
5 Herein, we avoid philosophical discussion on the notion of iden-

tity; for interesting discussion thereon, see [19].

large, static, Linked Data corpora crawled from the

Web. 6 The core operation of SWSE is to take user key-

word queries as input, and to generate a ranked list of

matching entities as results. After the core components

of a crawler, index and user-interface, we saw a clear

need for a component which consolidates—by means of

identifying and canonicalising equivalent identifiers—

the indexed corpus; there was an observable lack of

URI use such that coreferent blank-nodes were preva-

lent [22] even within the same dataset, and thus we

observed many duplicate results referring to the same

thing, leading to poor integration of data from our source

documents.

In this paper, we revisit this fundamental component,

where as we will see in later sections, use and re-use

of URIs is still sparse; our core requirements for such

a component remain the same:

– the component must give high precision of consoli-

dated results;

– the underlying algorithm(s) must be scalable;

– the approach must be fully automatic;

– the methods must be domain agnostic;

where a component with poor precision will lead to gar-

bled final results merging unrelated entities, where scal-

ability is required to apply the process over our corpora

typically in the order of a billion statements (and which

we feasibly hope to expand in future), where the scale

of the corpora under analysis precludes any manual in-

tervention, and where—for the purposes of research—

the methods should not give preferential treatment to

any domain or vocabulary of data (other than core

RDF(S)/OWL terms). Alongside these primary require-

ments, we also identify the following secondary crite-

ria:

– the analysis should demonstrate high recall;

– the underlying algorithm(s) should be efficient;

where the consolidation component should identify as

many (correct) equivalences as possible, and where

the algorithm should be applicable in reasonable time.

Clearly the secondary requirements are also important,

but they are superceded by those given earlier, where a

certain trade-off exists: we prefer a system which gives

a high percentage of correct results and leads to a clean

consolidated corpus over an approach which gives a

higher percentage of consolidated results but leads to a

partially garbled corpus; similarly, we prefer a system

6 By static, we mean that the system does not cater directly for

updates—this omission allows for many optimisations in individual

components within the architecture. Instead, we aim at a cyclical

indexing paradigm, where the user-facing indices are read-optimised,

and the next version of the index is being prepared in background

processes.

2

which can handle more data (is more scalable), but may

possibly have a lower throughput (is less efficient). 7

Thus, in this paper we revisit methods for scalable,

precise, automatic and domain-agnostic entity consol-

idation over large, static Linked Data corpora. In or-

der to make our methods scalable, we avoid dynamic

on-disk index structures and instead opt for algorithms

which rely on sequential on-disk reads/writes of com-

pressed flat files, using operations such as scans, ex-

ternal sorts, merge-joins, and only light-weight or non-

critical in-memory indices. In order to make our meth-

ods efficient, we demonstrate distributed implementa-

tions of our methods over a cluster of shared-nothing

commodity hardware, where our algorithms attempt to

maximise the portion of time spent in embarrassingly

parallel execution—i.e., parallel, independent compu-

tation without need for inter-machine coordination. In

order to make our methods domain-agnostic and fully-

automatic, we exploit the generic formal semantics of

the data described in RDF(S)/OWL and also, generic

statistics derivable from the corpus. In order to achieve

high recall, we attempt to exploit—insofar as possible—

both the formal semantics and the statistics derivable

from the corpus to identify equivalent entities. Aiming

at high precision, we introduce methods which again ex-

ploit the semantics and statistics of the data, but to con-

versely disambiguate entities—to defeat equivalences

found in the previous step which are unlikely to be true

according to some criteria.

In particular, in this paper, we:

– provide some necessary preliminaries and describe

our distributed architecture (Section 2);

– characterise the 1 billion quadruple Linked Data cor-

pus which will be used for later evaluation of our

methods, particular focussing on the (re-)use of data-

level identifiers in the corpus (Section 3);

– describe and evaluate our distributed base-line ap-

proach for consolidation which leverages explicit

owl:sameAs relations (Section 4);

– describe and evaluate a distributed approach which

extends consolidation to consider a richer OWL se-

mantics for consolidating (Section 5);

– present a distributed algorithm for determining

weighted concurrence between entities using statisti-

cal analysis of predicates in the corpus (Section 6);

7 Of course, entity consolidation has many practical applications

outside of our referential use-case SWSE, and is useful in many

generic query-answering secnarios—we see these requirements as

being somewhat fundamental to a consolidation component, of

course to varying degrees.

– present a distributed approach to disambiguate

entities—i.e., detect likely erroneous consolidation—

combining the semantics and statistics derivable from

the corpus (Section 7);

– provide critical discussion (Section 8), render related

work (Section 9) and conclude with discussion (Sec-

tion 10).

2. Preliminaries

In this section, we provide some necessary prelimi-

naries relating to (i) RDF: the structured format used in

our corpora (Section 2.1); (ii) RDFS/OWL and OWL 2

RL/RDF rules with respect to which we perform rea-

soning and deduce equality (Section 2.2). We attempt

to preserve notation and terminology as prevalent in the

literature.

2.1. RDF

We briefly give some necessary notation relating to

RDF constants and RDF triples; see [21].

RDF Constant Given the set of URI references U,

the set of blank nodes B, and the set of literals L, the

set of RDF constants is denoted by C = U [B [L.

As opposed to the RDF-mandated existential semantics

for blank-nodes, we interpret blank-nodes as ground

skolem constants; note also that we rewrite blank-node

labels to ensure uniqueness per document, as prescribed

in [21] for merging RDF graphs.

RDF Triple A triple t := (s; p; o) 2 (U[B)�U�C
is called an RDF triple, where s is called subject, p

predicate, and o object. We call a finite set of triples

G � G a graph.

RDF Triple in Context/Quadruple Given c 2 U, let

http(c) denote the possibly empty graph Gc given by

dereferencing the URI c. An ordered pair (t, c) with an

RDF triple t = (s, p, o), c 2 U and t 2 http(c) is called

a triple in context c. We may also refer to (s, p, o, c) as

an RDF quadruple or quad q with context c.

2.2. RDFS, OWL, OWL 2 RL/RDF rules and the

semantics of equality

Alongside assertional data which defines relation-

ships between individuals, provides classes to which

those individuals belong, and provide attributes of those

3

individuals which have literal values, RDFS and OWL

allow for defining a domain of discourse in the form of

terminological data, which describes those classes, re-

lationships (object properties), and attributes (datatype

properties) and declaratively assigns them a seman-

tics. Thereafter, reasoning can leverage the semantics

of these terms and allows for deriving new knowledge.

OWL 2 RL/RDF [17] rules are a partial-

axiomatisation of the OWL 2 RDF-Based Seman-

tics which is applicable for arbitrary RDF graphs,

and constitutes an extension of the RDF Seman-

tics [21]. Interestingly for our scenario, this profile in-

cludes rules which leverage terminological knowledge

to infer equality between individuals—denoted by an

owl:sameAs relation—and rules which thereafter par-

tially axiomatise the semantics of owl:sameAs.

Firstly, in Table B.2, we provide the rules which use

terminological knowledge (alongside assertional knowl-

edge) to directly infer owl:sameAs relations; we identify

rules which require new OWL 2 constructs by italicis-

ing the rule label. In Table B.3, we provide an extended

set of OWL 2 RL rules which contain precisely one as-

sertional pattern and for which we have demonstrated a

scalable implementation in [25]—these rules can pro-

vide additional inferences which indirectly lead to the

derivation of new owl:sameAs data. We will further dis-

cuss both sets of rules in Section 5.

In Table B.4, we provide the set of OWL 2 RL/RDF

rules which can detect inconsistencies: that is, sets of

statements which together form a contradiction—these

rules can be used to detect possibly incorrect consoli-

dation, and will be discussed further in Section 7.

In Table B.1, we provide the set of rules which sup-

port the (positive) semantics of owl:sameAs, axioma-

tising the reflexivity (eq-ref), symmetry (eq-sym) and

transitivity (eq-trans) of the relation, as well as support

for the semantics of replacement (eq-rep-*). Note that

we (optionally, and in the case of later evaluation) do

not support eq-ref or eq-rep-p, and provide only partial

support for eq-rep-o: (i) although eq-ref will instead

lead to a large bulk of materialised reflexive owl:sameAs

statements, it is not difficult to see that such statements

will not lead to any consolidation or other non-reflexive

equality relations; (ii) given that we operate over un-

verified Web data—and indeed that there is much noise

present in such data—we do not want possibly impre-

cise equality relations to affect predicates of triples,

where we support inferencing on such “terminological

positions” with alternative reasoning strategies detailed

in [25]; (iii) for similar reasons, we do not support re-

placement for terms in the object position of rdf:type

triples.

Given that the semantics of equality is quadratic with

respect to the A-Box, we apply a partial-materialisation

approach which gives our notion of consolidation—

instead of materialising all possible inferences given by

the semantics of replacement, we instead choose one

“canon” to represent the set of equivalent terms. We

have used this approach in previous works [22–24],

and it has also appeared in related works in the litera-

ture [51,28], as a common-sense optimisation for han-

dling data-level equality. To take an example, in previ-

ous works [22] we found a valid equivalence class (set

of equivalent entities) with 32,390 members; material-

ising all non-reflexive owl:sameAs statements would in-

fer more than 1 billion owl:sameAs relations(32,3902 -

32,390) = 1,049,079,710; further assuming that each en-

tity appeared in, on average, two quadruples, we would

infer an additional �2 billion of massively duplicated

data.

Note that although we only perform partial

materialisation—and with the exception of not support-

ing eq-ref-p and only partially supporting eq-rep-o—

we do not change the semantics of equality: along-

side the partially materialised data, we provide a set

of consolidated owl:sameAs relations (containing all of

the identifiers in each equivalence class) which can be

used to “backward-chain” the full inferences possible

through replacement (as required). 8 Thus, we do not

consider the canon as somehow ‘definitive’ or superced-

ing the other identifiers, but merely consider it as rep-

resenting the equivalence class. 9

Finally, herein we do not consider consolidation of

literals; one may consider useful applications, e.g., for

canonicalising datatype literals, but such discussion is

out of the current scope.

2.3. Distribution architecture

Our methods are implemented on a shared-nothing

distributed architecture [47] over a cluster of commod-

ity hardware. The distributed framework consists of a

master machine which orchestrates the given tasks, and

several slave machines which perform parts of the task

in parallel.

The master machine can instigate the following dis-

tributed operations:

8 With respect to eq-ref, one can consider fairly trivial backward-

chaining (or query-time) support for said semantics.
9 We may optionally consider non-canonical blank-node identifiers

as redundant and discard them.

4

– scatter: partition on-disk data using some local split

function, and send each chunk to individual slave

machines for subsequent processing;

– run: request the parallel execution of a task by the

slave machines—such a task either involves process-

ing of some data local to the slave machine, or the

coordinate method (described later) for reorganising

the data under analysis;

– gather: gathers chunks of output data from the slave

swarm and performs some local merge function over

the data;

– flood: broadcast global knowledge required by all

slave machines for a future task.

The master machine provides input data to the slave

swarm, provides the control logic required by the dis-

tributed task (commencing tasks, coordinating timing,

ending tasks), gathers and locally perform tasks on

global knowledge which the slave machines would oth-

erwise have to replicate in parallel, and transmits glob-

ally required knowledge.

The slave machines, as well as performing tasks in

parallel, can perform the following distributed operation

(on the behest of the master machine):

– coordinate: local data on each slave machine is par-

titioned according to some split function, with the

chunks sent to individual machines in parallel; each

slave machine also gathers the incoming chunks in

parallel using some merge function.

The above operation allows slave machines to reor-

ganise (split/send/gather) intermediary amongst them-

selves; the coordinate operation could be replaced by

a pair of gather/scatter operations performed by the

master machine, but we wish to avoid the channelling

of all intermediary data through one machine. Without

the coordinate operation, our framework closely re-

sembles the MapReduce framework [11], with scatter

corresponding to the Map operation, and gather corre-

sponding to the Reduce operation.

Note that herein, we assume that the input corpus is

evenly distributed and split across the slave machines,

and that the slave machines have roughly even speci-

fications: that is, we do not consider any special form

of load balancing, but instead aim to have uniform ma-

chines processing comparable data-chunks.

We note that there is the practical issue of the mas-

ter machine being idle waiting for the slaves, and, more

critically, the potentially large cluster of slave machines

waiting idle for the master machine. One could over-

come idle times with mature task-scheduling (e.g., in-

terleaving jobs) and load-balancing. From an algorith-

mic point of view, removing the central coordination on

the master machine may enable better distributability.

One possibility would be to allow the slave machines to

duplicate the aggregation of global knowledge in paral-

lel: although this would free up the master machine and

would probably take roughly the same time, duplicating

computation wastes resources which could otherwise be

exploited by, e.g., interleaving jobs. A second possibil-

ity would be to avoid the requirement for global knowl-

edge and to coordinate upon the larger corpus (e.g., a

coordinate function hashing on the subject and object

of the data, or perhaps an adaptation of the SPEEDDATE

routing strategy [37]). Such decisions are heavily influ-

enced by the scale of the task to perform, the percent-

age of knowledge which is globally required, how the

input data are distributed, how the output data should

be distributed, and the nature of the cluster over which

it should be performed and the task-scheduling possi-

ble. The distributed implementation of our tasks are de-

signed to exploit a relatively small percentage of global

knowledge which is cheap to coordinate, and we choose

to avoid—insofar as reasonable—duplicating computa-

tion.

2.4. Experimental setup

Our entire code-base is implemented on top of stan-

dard Java libraries; we thus instantiate the distributed

architecture using Java RMI libraries, and using the

lightweight open-source Java RMIIO package 10 for

streaming data for the network.

All of our evaluation is based on nine machines

connected by Gigabit ethernet, 11 each with uniform

specifications, viz., 2.2GHz Opteron x86-64, 4GB

main memory, 160GB SATA hard-disks, running Java

1.6.0 12 on Debian 5.0.4.

3. Experimental corpus

Later in this paper, we discuss the performance and

fecundity of applying our methods over a corpus of

1.118 billion quadruples derived from an RDF/XML

crawl of 3.985 million web documents in mid-May 2010

(detailed in [24]. Of the 1.118 billion quads, 1.106 bil-

lion are unique, and 947 million are unique triples. The

data contain 23 thousand unique predicates and 105

thousand unique class terms (terms in the object posi-

tion of an rdf:type triple). In terms of diversity, the

corpus consists of data from 783 pay-level-domains—

10http://openhms.sourceforge.net/rmiio/
11We observe, e.g., a max FTP transfer rate of 38MB/sec between

machines.

5

PLDs; e,g, deri.ie, data.gov.uk—as was the result of

an open, domain agnostic crawl [24].

Now, we discuss the usage of terms in a data-level

position, viz., terms in the subject position or object

position of non-rdf:type triples. 12 Since we do not

consider the consolidation of literals or schema-level

concepts, we focus on characterising blank-node and

URI re-use in such data-level positions, thus rendering

a picture of the morphology of the data.

We found 286.3 million unique terms, of which 165.4

million (57.8%) were blank-nodes, 92.1 million (32.2%)

were URIs, and 28.9 million (10%) were literals. With

respect to literals, each had on average 9.473 data-level

occurrences (by definition, all in the object position).

With respect to blank-nodes, each had on average

5.233 data-level occurrences. Each occurred on average

0.995 times in the object position of a non-rdf:type

triple, with 3.1 million (1.87%) not occurring in the

object position; conversely, each occurred on average

4.239 times in the subject position of a triple, with 69

thousand (0.04%) not occurring in the subject position.

Thus, we summarise that almost all blank-nodes appear

in both the subject position and object position, but

occur most prevalently in the former. Importantly, note

that in our input, blank-nodes cannot be re-used across

sources.

With respect to URIs, each had on average 9.41 data-

level occurrences (1.8� the average for blank-nodes),

with 4.399 average appearances in the subject posi-

tion and 5.01 appearances in the object position—19,85

million (21.55%) did not appear in an object position,

whilst 57.91 million (62.88%) did not appear in a sub-

ject position.

With respect to re-use across sources, each URI had a

data-level occurrence in, on average, 4.7 documents, and

1.008 PLDs—56.2 million (61.02%) of URIs appeared

in only one document, and 91.3 million (99.13%) only

appeared in one PLD. Also, re-use of URIs across doc-

uments was heavily weighted in favour of use in the ob-

ject position: URIs appeared in the subject position in,

on average, 1.061 documents and 0.346 PLDs; for the

object position of non-rdf:type triples, URIs occurred

in, on average, 3.996 documents and 0.727 PLDs.

The URI with the most data-level occur-

rences (1.66 million) was http://identi.ca/;

the URI with the most re-use across documents

(appearing in 179.3 thousand documents) was

http://creativecommons.org/licenses/by/3.0/;

the URI with the most re-use across PLDs

12Please see [24, Appendix A] for further statistics relating to this

corpus.

(appearing in 80 different domains) was

http://www.ldodds.com/foaf/foaf-a-matic. Al-

though some URIs do enjoy widespread re-use across

different documents and domains, in Figures 1 and 2

we give the distribution of re-use of URIs across docu-

ments and across PLDs, where a power-law relationship

is roughly evident—again, the majority of URIs only

appear in one document (61%) or in one PLD (99%).

From this analysis, we can conclude that with respect

to data-level terms in our corpus:

– blank-nodes—which by their very nature cannot be

re-used across documents—are 1.8� more prevalent

than URIs;

– despite a smaller number of unique URIs, each one is

used in (probably coincidentally) 1.8� more triples;

– unlike blank-nodes, URIs commonly only appear in

either a subject position or an object position;

– each URI is re-used on average in 4.7 documents, but

usually only within the same domain—most external

re-use is in the object position of a triple;

– 99% of URIs appear in only one PLD.

We can conclude that within our corpus—itself a gen-

eral crawl for RDF/XML on the Web—we find that there

is only sparse re-use of data-level terms across sources

and particularly domains.

4. Base-line Consolidation

We now present the “base-line” algorithm for consol-

idation which leverages asserted owl:sameAs relations

in the data—this is the current method of consolida-

tion employed by the SWSE system and has been de-

scribed in [24]. 13 Herein, we briefly reintroduce the

approach and performance details and then provide ex-

tended analysis of the results.

4.1. High-level approach

The approach is straight-forward:

(i) scan the corpus and separate out all asserted

owl:sameAs relations from the main body of the

corpus;

13Note to reviewer: an earlier version of a SWSE paper was

submitted to the JWS Special Issue on Semantic Search in February

and we are still awaiting notification—for reference, please see an

updated technical report version of the paper which contains the

experiments over the same corpus [24]—and in this previous paper,

we describe our baseline approach as herein reintroduced. This

should not affect novelty since (i) the SWSE paper covers the end-

to-end system of which consolidation is only one component; (ii) in

this paper, the base-line approach is heavily extended upon in later

sections.

6

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1 10 100 1000 10000 100000 1e+006

nu
m

be
r

of
 U

R
Is

number of documents mentioning URI

Fig. 1. Distribution of URIs and the number of documents they

appear in (in a data-position)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1 10 100

nu
m

be
r

of
 U

R
Is

number of PLDs mentioning URI

Fig. 2. Distribution of URIs and the number of PLDs they appear

in (in a data-position)

(ii) load these relations into an in-memory index,

which encodes the transitive and symmetric se-

mantics of owl:sameAs;

(iii) for each equivalence class in the index, choose a

canonical term;

(iv) scan the corpus again, canonicalising any term

in the subject position or object position of an

rdf:type triple.

Thus, we need only index a small subset of the corpus—

owl:sameAs statements—and can apply consolidation

by means of two scans. The non-trivial aspects of the al-

gorithm are given by the in-memory equality index: we

provide the details in Algorithm 1, where we use a map

which stores a term (involved in a non-reflexive equal-

ity relation) as key, and stores a flat set of equivalent

terms (of which the key is a member) as value—thus,

we can perform a lookup of any term and retrieve the

set of equivalent terms given by the owl:sameAs corpus.

With respect to choosing a canonical term, we prefer

URIs over blank-nodes, thereafter choosing a term with

the lowest alphabetical ordering; a canonical term is

then associated to each equivalent set. Once the equiv-

alence index has been finalised, we re-scan the corpus

and canonicalise the data.

4.2. Distributed approach

Again, distribution of the approach is fairly intuitive,

as follows:

(i) run: scan the distributed corpus (split over the

slave machines) in parallel to extract owl:sameAs

relations;

(ii) gather: gather all owl:sameAs relations onto the

master machine, and build the in-memory equal-

ity index;

Algorithm 1 Building equivalence map (from [24])

Require: SAMEAS DATA : SA
1: map fg
2: for t 2 SA do

3: eqcs map.get(t:s)

4: if eqcs = ; then

5: eqcs fsg
6: end if

7: eqco map.get(t:o)

8: if eqco = ; then

9: eqco fog
10: end if

11: if eqcs 6= eqco then

12: eqcs[o eqcs [eqco
13: for e 2 eqcs[o do

14: map.put(e; eqcs[o)

15: end for

16: end if

17: end for

(iii) flood/run: send the equality index (in its entirety)

to each slave machine, and apply the consolida-

tion scan in parallel.

As we will see in the next section, the most expensive

methods—involving the two scans of the main corpus—

can be conducted in parallel.

4.3. Performance Evaluation

We applied the distributed base-line consolidation

over our corpus with the aformentioned procedure and

setup. The entire consolidation process took 63.3 min,

with the bulk of time taken as follows: the first scan ex-

tracting owl:sameAs statements took 12.5 min, with an

average idle time for the servers of 11 s (1.4%)—i.e.,

on average, the slave machines spent 1.4% of the time

7

Category min % Total

Total execution time 63.3 100

Master (Local)

Executing 8.5 13.4

Aggregating owl:sameAs 8.4 13.3

Miscellaneous 0.1 0.1

Idle (waiting for slaves) 54.8 86.6

Slave (Parallel)

Avg. Executing (total) 53.5 84.6

Extract owl:sameAs 12.3 19.5

Consolidate 41.2 65.1

Avg. Idle 9.8 15.4

Waiting for peers 1.3 2

Waiting for master 8.5 13.4

Table 1

Breakdown of timing of distributed baseline consolidation

idly waiting for peers to finish. Transferring, aggregat-

ing and loading the owl:sameAs statements on the mas-

ter machine took 8.4 min. The second scan rewriting the

data according to the canonical identifiers took in total

42.3 min, with an average idle time of 64.7 s (2.5%) for

each machine at the end of the round. The slower time

for the second round is attributable to the extra over-

head of re-writing the data to disk, as opposed to just

reading.

In Table 1, we give a breakdown of the timing for

the tasks. Of course, please note that the percentages

are a function of the number of machines where, e.g., a

higher number of slave machines will correspond to a

higher percentage of time on the master machine. How-

ever, independent of the number of slaves, we note that

the master machine required 8.5 min for coordinating

globally-required knowledge owl:sameAs, and that the

rest of the task time is spent in embarrassingly paral-

lel execution (amenable to reduction by increasing the

number of machines). For our setup, the slave machines

were kept busy for, on average, 84.6% of the total task

time; of the idle time, 87% was spent waiting for the

master to coordinate the owl:sameAs data, and 13%

was spent waiting for peers to finish their task due to

sub-optimal load balancing. The master machine spent

86.6% of the task idle waiting for the slaves to finish.

4.4. Results Evaluation

We extracted 11.93 million raw owl:sameAs state-

ments, forming 2.16 million equivalence classes men-

tioning 5.75 million terms (6.24% of URIs)—an av-

erage of 2.65 elements per equivalence class. Of the

5.75 million terms, only 4,156 were blank-nodes. Fig-

ure 3 presents the distribution of sizes of the equiva-

PLD PLD Co-occur

1 rdfize.com uriburner.com 506,623

2 dbpedia.org freebase.com 187,054

3 bio2rdf.org purl.org 185,392

4 loc.gov info:lc/authorities a 166,650

5 l3s.de rkbexplorer.com 125,842

6 bibsonomy.org l3s.de 125,832

7 bibsonomy.org rkbexplorer.com 125,830

8 dbpedia.org mpii.de 99,827

9 freebase.com mpii.de 89,610

10 dbpedia.org umbel.org 65,565

Table 3

Top 10 PLD pairs co-occurring in the equivalence classes, with

number of equivalence classes they co-occur in

a In fact, these were ‘syntactic’ equivalences within the same PLD

lence classes, where the largest equivalence class con-

tains 8,481 equivalent entities and 1.6 million (74.1%)

equivalence classes contain the minimum two equiva-

lent identifiers.

Table 2 shows the canonical URIs for the largest

5 equivalence classes; we manually inspected the re-

sults and show whether or not the results were ver-

ified as correct/incorrect. Indeed, results for class 1

and 2 were deemed incorrect due to over-use of

owl:sameAs for linking drug-related entities in the

DailyMed and LinkedCT exporters. Results 3 and 5

were verified as correct consolidation of prominent

Semantic Web related authors, resp.: Dieter Fensel

and Rudi Studer—authors are given many duplicate

URIs by the RKBExplorer coreference index. 14 Re-

sult 4 contained URIs from various sites generally re-

ferring to the United States, mostly from DBPedia

and LastFM. With respect to the DBPedia URIs, these

(i) were equivalent but for capitilisation variations or

stop-words, (ii) were variations of abbreviations or

valid synonyms, (iii) were different language versions

(e.g., dbpedia:États Unis), (iv) were nicknames (e.g.,

dbpedia:Yankee land), (v) were related but not equiva-

lent (e.g., dbpedia:American Civilization), (vi) were

just noise (e.g., dbpedia:LOL Dean).

Besides the largest equivalence classes—which we

have seen are prone to errors perhaps due to the snow-

balling effect of the transitive and symmetric closure—

we also randomly sampled 100 equivalent sets and man-

ually checked for errors based on label (as an intuitive

idea of what the identifier refers to) and type. We veri-

14For example, see the coreference results given

by http://www.rkbexplorer.com/sameAs/

?uri=http://acm.rkbexplorer.com/id/

person-53292-22877d02973d0d01e8f29c7113776e7e,

which at the time of writing correspond to 436 out of the 443

equivalent URIs found for Dieter Fensel.

8

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100 1000 10000

nu
m

be
r

of
 c

la
ss

es

equivalence class size

Fig. 3. Distribution of sizes of equivalence classes on log/log scale

(from [24])

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 10 100

nu
m

be
r

of
 c

la
ss

es

number of PLDs in equivalence class

Fig. 4. Distribution of the number of PLDs per equivalence class

on log/log scale

Canonical Term (Lexically Lowest in Equivalence Class) Size Correct?

1 http://bio2rdf.org/dailymed_drugs:1000 8,481 �

2 http://bio2rdf.org/dailymed_drugs:1042 800 �

3 http://acm.rkbexplorer.com/id/person-53292-22877d02973d0d01e8f29c7113776e7e 443 X

4 http://agame2teach.com/#ddb61cae0e083f705f65944cc3bb3968ce3f3ab59-ge_1 353 X/�

5 http://acm.rkbexplorer.com/id/person-236166-1b4ef5fdf4a5216256064c45a8923bc9 316 X

Table 2

Largest 5 equivalence classes (from [24])

fied that all 100 were correct (or, more accurately, were

not obviously incorrect). 15

In Table 3, we give the most frequently co-occurring

PLD-pairs in our equivalence classes, where datasets

resident on these domains are “heavily” interlinked with

owl:sameAs relations.

With respect to consolidation, identifiers in 78.6

million subject positions (7% of subject positions)

and 23.2 million non-rdf:type-object positions (2.6%)

were rewritten, giving a total of 101.9 million positions

rewritten (5.1% of total rewritable positions). The av-

erage number of documents mentioning each URI rose

slightly from 4.691 to 4.719 (a 0.6% increase) due to

consolidation, and the average number of PLDs also

rose slightly from 1.005 to 1.007 (a 0.2% increase).

5. Extended Reasoning Consolidation

Having presented the baseline approach as currently

used in SWSE [24], we look at extending the approach

to include more expressive reasoning capabilities, us-

ing OWL 2 RL/RDF rules to infer novel owl:sameAs

relations.

15Many were simple ‘syntactic’ equivalences from the

opiumfield.com LastFM data exporter; for reference, we’ve

published the 100 sets at http://aidanhogan.com/swse/

eqcs-sample-100.txt.

5.1. High-level approach

In Table B.2, we provide the pertinent rules for in-

ferring new owl:sameAs relations from the data. How-

ever, after analysis of the data, we observed that no doc-

uments used the owl:maxQualifiedCardinality con-

struct required for the cls-maxqc* rules, and that only

one document defined one owl:hasKey axiom 16 in-

volving properties with < 5 occurrences in the data—

hence, we leave implementation of these rules for future

work and note that these new OWL 2 constructs have

probably not yet had time to find proper traction on

the Web. Thus, on top of inferencing involving explicit

owl:sameAs, we are left with prp-fp which supports the

semantics of properties typed owl:FunctionalProp-

erty, prp-ifp which supports the semantics of proper-

ties typed owl:InverseFunctionalProperty, and cls-

maxc1 which supports the semantics of classes with a

specified cardinality of 1 for some defined property (a

class restricted version of the functional-property infer-

encing). Note that we have presented non-distributed

execution of these rules at a smaller scale (147 million

quadruples) in [23].

Thus, we look at using OWL 2 RL/RDF rules prp-fp,

prp-ifp and cls-maxc2 for inferring new owl:sameAs

relations between individuals—we also support an ad-

16http://huemer.lstadler.net/role/rh.rdf

9

ditional rule which gives an exact cardinality version of

cls-maxc2. 17

However, applying only these rules may lead to in-

complete results; for example, consider the following

data:

From the FOAF Vocabulary

foaf:homepage rdfs:subPropertyOf foaf:isPrimaryTopicOf .

foaf:isPrimaryTopicOf owl:inverseOf foaf:primaryTopic .

foaf:isPrimaryTopicOf a owl:InverseFunctionalProperty .

From DBLP publications export

dblp:Axel foaf:homepage <http://polleres.net/> .

From Axel’s FOAF file

<http://polleres.net/> foaf:primaryTopic axel:me .

Here we need OWL 2 RL/RDF rules prp-inv

and prp-spo1—handling standard owl:inverseOf and

rdfs:subPropertyOf inferencing respectively—to in-

fer:

From prp-spo1

dblp:Axel foaf:isPrimaryTopicOf <http://polleres.net/> .

From prp-inv

axel:me foaf:isPrimaryTopicOf <http://polleres.net/> .

Subsequently, from prp-ifp

dblp:Axel owl:sameAs axel:me .

axel:me owl:sameAs dblp:Axel .

Thus, we also investigate pre-applying more gen-

eral OWL 2 RL/RDF reasoning over the corpus to de-

rive more complete results, where the ruleset is avail-

able in Table B.3 and is restricted to OWL 2 RL/RDF

rules with one assertional pattern. Herein, we only

sketch the details of applying these “general rules”—

for which we use the distributed Scalable Authoritative

OWL Reasoner (SAOR) detailed in [25]—focusing in-

stead upon the application of rules which directly pro-

duce owl:sameAs consequences.

Thus, our high-level approach is as follows:

(i) extract relevant terminological data from the cor-

pus;

(ii) bind the terminological patterns in the rules from

this data, thus creating a larger set of general rules

with only one assertional pattern and identifying

assertional patterns which are useful for consoli-

dation;

(iii) apply general-rules over the corpus, and buffer

any input/inferred statements relevant for consol-

idation to a new file;

(iv) derive the closure of owl:sameAs statements from

the consolidation-relevant dataset;

(v) apply consolidation over the main corpus with

respect to the closed owl:sameAs data.

17Exact cardinalities are disallowed in OWL 2 RL due to their effect

on the formal proposition of completeness underlying the profile,

but such considerations are moot in our scenario.

In Step (i), we extract terminological data re-

quired for application of both the general/consol-

idation rules, including members of the classes

owl:(Inverse)FunctionalProperty and relevant car-

dinality restrictions. During the extraction and analysis

of the terminological data, we only consider statements

which are authoritatively served by a document; details

of the authoritative analysis are available in [25], but to

give a brief anecdotal explanation, we only consider—

for example—an axiom stating that a property P is

inverse-functional if served by the document to which

P deferences: i.e., we would only consider such axioms

on FOAF properties if given by the FOAF spec, and ig-

nore third-party axioms saying that, e.g.,

foaf:name a owl:InverseFunctionalProperty .

foaf:weblog a owl:FunctionalProperty .

In Step (ii), we (authoritatively) bind the terminolog-

ical patterns of the general rules and the join variables

in the assertional patterns to create a set of rules with

only one assertional pattern, amenable to execution by

a single scan; e.g.:

?x foaf:homepage ?y .

) ?x isPrimaryTopicOf ?y .

Again, the process is detailed in [25]. We also bind the

terminological patterns of the consolidation rules in Ta-

ble B.2 to identify patterns, such as:

?x foaf:isPrimaryTopicOf ?y .

which are useful for consolidation.

In Step (iii), we apply the (terminologically ground)

general rules over the corpus, where any input or in-

ferred statements matching a consolidation relevant

pattern are buffered to a separate file, including any

owl:sameAs statements found.

Subsequently, in Step (iv), we must now compute the

canonicalised closure of the owl:sameAs statements. In

the previous section we used an in-memory equality in-

dex to support the semantics of owl:sameAs, to represent

the equivalence classes and chosen canonical terms, and

to provide the lookups required during canonicalisation

of the corpus. However, by using such an approach, the

scalability of the system is bound by the memory re-

sources of the hardware (which itself cannot be solved

by distribution since—in our approach—all machines

require knowledge about all same-as statements). In par-

ticular, the extended reasoning approach will produce a

large set of such statements which will require a pro-

hibitive amount of memory to store. 18 Thus, we turn to

18Currently, we store entire (uncompressed) strings in memory, using

a flyweight pattern (interning) which guarantees unique references.

One could consider lossless string compression techniques over the

repetitive URI strings (e.g., see [31,14]) to increase the in-memory

10

on-disk methods to handle the transitive and symmetric

closure of the owl:sameAs corpus and to perform the

subsequent consolidation of the corpus in Step (v).

In particular, we mainly employ the following three

on-disk primitives: (i) sequential scans of flat files

containing line-delimited tuples; 19 (ii) external-sorts

where batches of statements are sorted in memory, the

sorted batches written to disk, and the sorted batches

merged to the final output; and (iii) merge-joins where

multiple sets of data are sorted according to their re-

quired join position, and subsequently scanned in an

interleaving manner which aligns on the join position

and where an in-memory join is applied for each indi-

vidual join element. Using these primitives to perform

the owl:sameAs computation minimises the amount of

main memory required, where we have presented sim-

ilar approaches in [22,23].

First, assertional memberships of functional prop-

erties, inverse-functional properties and cardinality re-

strictions (both properties and classes) are written to

separate on-disk files. For functional-property and car-

dinality reasoning, a consistent join variable for the as-

sertional patterns is given by the subject position; for

inverse-functional-property reasoning, a join variable is

given by the object position. 20 Thus, we can sort the

former sets of data according to subject and perform

a merge-join by means of a linear scan thereafter; the

same procedure applies to the latter set, sorting and

merge-joining on the object position. Applying merge-

join scans, we produce new owl:sameAs statements.

Both the originally asserted and newly inferred

owl:sameAs relations are similarly written to an on-disk

file, over which we now wish to perform the canoni-

calised symmetric/transitive closure. We apply a simi-

lar method again, leveraging external sorts and merge-

joins to perform the computation (herein, we sketch and

point the interested reader to [23, Section 4.6]). In the

following, we use > and < to denote lexical ordering,

SA as a shortcut for owl:sameAs, a, b, c, etc., to denote

members of U[B such that a < b < c, and define URIs

to be lexically lower than blank nodes (8u 2 U; 8v 2
B : u < v). The process is as follows:

(i) we only materialise symmetric equality relations

which involve a (possibly intermediary) canoni-

capacity. We are reluctant to adopt an OID approach, viewing the

OID indexing and mapping from OIDs to full strings as prohibitively

expensive, subject to further investigation.
19These files are G-Zip compressed flat files of N-Triple-like syntax

encoding arbitrary length tuples of RDF constants.
20Although a predicate-position join is also available, we prefer

data-position joins which provide smaller batches of data for the

in-memory join.

cal term chosen by a lexical ordering: given b SA

a, we materialise a SA b; given a SA b SA c, we

materialise the relations a SA b, a SA c, and their

inverses, but do not materialise b SA c or its in-

verse;

(ii) transitivity is supported by iterative merge-join

scans:

– during the scan, if we find c SA a (sorted by

object) and c SA d (sorted naturally), we infer

a SA d and drop the non-canonical c SA d (and

d SA c);
– at the end of the scan:

� newly inferred triples are marked and

merge-joined into the main body of

equality relations—any triples echoing an

earlier inference are ignored;

� dropped non-canonical statements are re-

moved;

– the process is then iterative: in the next scan, if

we find d SA a and d SA e, we infer a SA e and

e SA a;

– inferences will only occur if they involve a

statement added in the previous iteration, en-

suring that inference steps are not re-computed

and that the computation will terminate;

(iii) the above iterations stop when a fixpoint is

reached and nothing new is inferred;

(iv) the process of reaching a fixpoint is accelerated

using available main-memory to store a cache of

partial equality chains.

With respect to the last item, we use Algorithm 1

to derive “batches” of in-memory equivalences, and

when in-memory capacity is achieved, we write these

batches to disk and proceed with on-disk computation:

this is particularly useful for computing the small num-

ber of long equality chains which would otherwise re-

quire sorts and merge-joins over all of the canonical

owl:sameAs data currently derived, and where the num-

ber of iterations would otherwise be the length of the

longest chain.

The result of this process is a set of canonicalised

equality relations representing the symmetric/transitive

closure. Finally, we briefly describe the process of

canonicalising data with respect to this on-disk equality

corpus, where we again use external-sorts and merge-

joins. Firstly, we prune the owl:sameAs index to only

maintain relations s1 SA s2 such that s1 > s2—thus,

given s1 SA s2, we know that s2 is the canon, and s1
is to be rewritten. We then sort the data according to

the position which we wish to rewrite, and perform a

merge-join over both sets of data, buffering the canoni-

calised data to an output file. If we want to rewrite mul-

11

tiple positions of a file of tuples (e.g., subject and ob-

ject), we must rewrite one position, sort the results by

the second position, and subsequently rewrite the sec-

ond position. 21

Finally, note that in the derivation of owl:sameAs

from the consolidation rules prp-fp, prp-ifp, cax-

maxc2, the overall process may be iterative. For in-

stance, consider the following data:

dblp:Axel foaf:isPrimaryTopicOf <http://polleres.net/> .

axel:me foaf:isPrimaryTopicOf <http://axel.deri.ie/> .

<http://polleres.net/> owl:sameAs <http://axel.deri.ie/> .

from which the conclusion that dblp:Axel is the same

as axel:me holds. We see that new owl:sameAs relations

(either asserted or derived from the consolidation rules)

may in turn “align” terms in the join position of the

consolidation rules, leading to new equivalences. Thus,

for deriving the final owl:sameAs, we require a higher-

level iterative process as follows:

(i) initially apply the consolidation rules, and ap-

pend the results to a file alongside the asserted

owl:sameAs statements found;

(ii) apply the initial closure of the owl:sameAs data;

(iii) then, iteratively until no new owl:sameAs infer-

ences are found:

– rewrite the join positions of the on-disk files

containing the data for each consolidation rule

according to the current owl:sameAs data;

– derive new owl:sameAs inferences possible

through the previous rewriting for each consol-

idation rule;

– re-derive the closure of the owl:sameAs data

including the new inferences.

The final closed file of owl:sameAs data can then

be re-used to rewrite the main corpus in two sorts and

merge-join scans over subject and object.

5.2. Distributed approach

The distributed approach follows quite naturally from

the previous discussion. As before, we assume that the

input data are evenly pre-distributed over the slave ma-

21One could consider instead building an on-disk map for equiv-

alence classes and pivot elements and follow a consolidation pro-

cedure similar to the previous section over the unordered corpus:

however, we would expect that such an on-disk index would have

a low cache hit-rate given the nature of the data, which would lead

to a high number of disk seek operations. An alternative approach

might be to split and hash the corpus according to subject/object and

split the equality data into relevant segments loadable in-memory

on each machine: however, this would again require a non-trivial

minimum amount of memory to be available over the given cluster.

chines (in any arbitrary ordering), where we can then

apply the following process:

(i) run: scan the distributed corpus (split over the

slave machines) in parallel to extract relevant ter-

minological knowledge;

(ii) gather: gather terminological data onto the mas-

ter machine and thereafter bind the terminologi-

cal patterns of the general/consolidation rules;

(iii) flood: flood the rules for reasoning and the

consolidation-relevant patterns to all slave ma-

chines;

(iv) run: apply reasoning and extract consolidation-

relevant statements from the input and inferred

data;

(v) gather: gather all consolidation statements onto

the master machine, then in parallel:

– local: compute the closure of the consolidation

rules and the owl:sameAs data on the master

machine;

– run: each slave machine sorts its fragment

of the main corpus according to natural order

(s; p; o; c);
(vi) flood: send the closed owl:sameAs data to the

slave machines once the distributed sort has been

completed;

(vii) run: each slave machine then rewrites the subjects

of their segment of the corpus, subsequently sorts

the rewritten data by object, and then rewrites the

objects (of non-rdf:type triples) with respect to

the closed owl:sameAs data.

5.3. Performance Evaluation

Applying the above process to our 1.118 billion

quadruple corpus took 12.34 h. Extracting the termino-

logical data took 1.14 h with an average idle time of 19

min (27.7%) (one machine took �18 min longer than

the rest due to processing a large ontology containing

�2 million quadruples [24]). Merging and aggregating

the terminological data took roughly �1 min. Applying

the reasoning and extracting the consolidation relevant

statements took 2.34 h, with an average idle time of 2.5

min (1.8%). Aggregating and merging the consolidation

relevant statements took 29.9 min. Thereafter, locally

computing the closure of the consolidation rules and the

equality data took 3.52 h, with the computation requir-

ing two iterations overall (the minimum possible—the

second iteration did not produce any new results); con-

current to the previous step, the parallel sort of remote

data by natural order took 2.33 h with an average idle

time of 6 min (4.3%). Subsequent parallel consolida-

12

Category min % Total

Total execution time 740.4 100

Master (Local)

Executing 243.6 32.9

Aggregate Consolidation Relevant Data 29.9 4

Closing owl:sameAsy 211.2 28.5

Miscellaneous 2.5 0.3

Idle (waiting for slaves) 496.8 67.1

Slave (Parallel)

Avg. Executing (total) 599.1 80.9

Extract Terminology 49.4 6.7

Extract Consolidation Relevant Data 137.9 18.6

Initial Sort (by subject)y 133.8 18.1

Consolidation 278 37.5

Avg. Idle 141.3 19.1

Waiting for peers 37.5 5.1

Waiting for master 103.8 14

Table 4

Breakdown of timing of distributed extended consolidation w/rea-

soning where y identifies the master/slave tasks run concurrently

tion of the data took 4.8 h with 10 min (3.5%) average

idle time—of this, �19% of the time was spent consol-

idating the pre-sorted subjects, �60% of the time was

spent sorting the rewritten data by object, and �21% of

the time was spent consolidating the objects of the data.

As before, Table 4 summarises the timing of the task,

where the master machine requires 4.06 h to coordinate

global knowledge, constituting the lower bound on time

possible for the task to execute with respect to increas-

ing machines in our setup—in future it may be worth-

while to investigate distributed strategies for computing

the owl:sameAs closure (which takes 28.5% of the to-

tal computation time), but for the moment we mitigate

the cost by concurrently running a sort on the slave ma-

chines, thus keeping the slaves busy for 63.4% of the

time taken for this local aggregation step. The slave ma-

chines were, on average, busy for 80.9% of the total

task time; of the idle time, 73.3% was spent waiting for

the master machine to aggregate the consolidation rele-

vant data and to finish the closure of owl:sameAs data,

and the balance (26.7%) was spent waiting for peers to

finish (mostly during the extraction of terminological

data).

Briefly, we also ran the consolidation without the

general reasoning rules (Table B.3) motivated ear-

lier. With respect to performance, the main variations

were given by (i) the extraction of consolidation rele-

vant statements—this time directly extracted from ex-

plicit statements as opposed to explicit and inferred

statements—which took 15.4 min (11% of the time

taken including the general reasoning) with an aver-

age idle time of less than one minute (6% average idle

time); (ii) local aggregation of the consolidation rele-

vant statements took 17 min (56.9% of the time taken

previously); (iii) local closure of the owl:sameAs data

took 3.18 h (90.4% of the time taken previously). The

total time saved equated to 2.8 h (22.7%), where 33.3

min were saved from coordination on the master ma-

chine, and 2.25 h were saved from parallel execution

on the slave machines.

5.4. Results Evaluation

Note that in this section, we present the results of

the consolidation which included the general reasoning

step in the extraction of consolidation-relevant state-

ments. In fact, we found that the only major varia-

tion between the two approaches was in the amount of

consolidation-relevant statements collected (discussed

presently), where other variations were in fact negligible

(<0.1%). Thus, for our corpus, extracting only asserted

consolidation-relevant statements offered a very close

approximation of the extended reasoning approach. 22

Extracting the terminological data, we found author-

itative declarations of 434 functional properties, 57

inverse-functional properties, and 109 cardinality re-

strictions with a value of 1.

We (again) gathered 11.93 million owl:sameAs state-

ments, as well as 52.93 million memberships of inverse-

functional properties, 11.09 million memberships of

functional properties, and 2.56 million cardinality-

relevant triples. Of these, respectively 22.14 mil-

lion (41.8%), 1.17 million (10.6%) and 533 thousand

(20.8%) were asserted—however, in the resulting closed

owl:sameAs data derived with and without the extra rea-

soned triples, we detected a variation of less than 12

thousand terms (0.08%), where only 129 were URIs,

and where other variations in statistics were less than

0.1% (e.g., there were 67 less equivalence classes when

the reasoned triples were included).

From previous experience [22], we were aware of cer-

tain values for inverse-functional properties and func-

tional properties which are erroneously published by

exporters and which cause massive incorrect consolida-

tion. We again blacklist statements featuring such val-

ues from our consolidation processing, where we give

the top 10 such values encountered for our corpus in

Table 5—this blacklist is the result of trial and error,

manually inspecting large equivalence classes and the

most common values for (inverse-)functional proper-

22At least in terms of pure quantity. However, we do not give an

indication of the quality or importance of those few equivalences

we miss with this approximation, which may be application specific.

13

Blacklisted Term Occurrences

1 empty literals 584,735

2 <http://null> 414,088

3 <http://www.vox.com/gone/> 150,402

4 "08445a31a78661b5c746feff39a9db6e4e2cc5cf" 58,338

5 <http://www.facebook.com> 6,988

6 <http://facebook.com> 5,462

7 <http://www.google.com> 2,234

8 <http://www.facebook.com/> 1,254

9 <http://google.com> 1,108

10 <http://null.com> 542

Table 5

Top ten most frequently occurring blacklisted values

ties. Empty literals are commonly exported (with and

without language tags) as values for inverse-functional-

properties (particularly FOAF “chat-ID properties”).

The literal "08445a31a78661b5c746feff39a9db6e4e2cc5cf" is the

SHA-1 hash of the string ‘mailto:’, commonly as-

signed as a foaf:mbox sha1sum value to users who

don’t specify their email in some input form. The

remaining URIs are mainly user-specified values for

foaf:homepage, or values automatically assigned for

users that don’t specify such. 23

During the computation of the owl:sameAs clo-

sure, we found zero inferences through cardinal-

ity rules, 106.8 thousand raw owl:sameAs inferences

through function-property reasoning, and 8.7 million

raw owl:sameAs inferences through inverse-functional-

property reasoning. The final canonicalised, closed, and

non-symmetric owl:sameAs index (such that s1 SA s2,

s1 > s2, and s2 is a canon) contained 12.03 million

statements.

From this data, we generated 2.82 million equiva-

lence classes (an increase of 1.31� from baseline con-

solidation) mentioning a total of 14.86 million terms

(an increase of 2.58� from baseline—5.77% of all

URIs and blank-nodes), of which 9.03 million were

blank-nodes (an increase of 2173� from baseline—

5.46% of all blank-nodes) and 5.83 million were URIs

(an increase of 1.014� from baseline—6.33% of all

URIs). Thus, we see a large expansion in the amount

of blank-nodes consolidated, but only minimal expan-

sion in the set of URIs referenced in the equivalence

classes. With respect to the canonical identifiers, 641

thousand (22.7%) were blank-nodes and 2.18 million

(77.3%) were URIs.

23Our full blacklist contains forty-one such values, and can be found

at http://aidanhogan.com/swse/blacklist.txt.

Figure 5 contrasts the equivalence class sizes for the

baseline approach (seen previously in Figure 3), and for

the extended reasoning approach. Overall, there is an

observable increase in equivalence class sizes, where

we see the average equivalence class size grow to 5.26

entities (1.98� baseline), the largest equivalence class

size grow to 33,052 (3.9� baseline) and the percentage

of equivalence classes with the minimum size 2 drop to

63.1% (from 74.1% in baseline).

In Table 6, we update the five largest equivalence

classes. Result 2 carries over from the baseline con-

solidation. The rest of the results are largely intra-

PLD equivalences, where the entity is described using

thousands of blank-nodes, with a consistent (inverse-

)functional property value attached. Result 1 refers to

a meta-user—labelled Team Vox—commonly appearing

in user-FOAF exports on the Vox blogging platform. 24

Result 3 refers to a person identified using blank-nodes

(and once by URI) in thousands of RDF documents

resident on the same server. Result 4 refers to the Im-

age Bioinformatics Research Group in the University

of Oxford—labelled IBRG—where again it is identified

in thousands of documents using different blank-nodes,

but a consistent foaf:homepage. Result 5 is similar to

result 1, but for a Japanese version of the Vox user.

Figure 6 presents a similar analysis to Figure 5,

this time looking at identifiers on a PLD-level gran-

ularity. Interestingly, the difference between the two

approaches is not so pronounced, initially indicating

that many of the additional equivalences found through

the consolidation rules are “intra-PLD”. In the base-

line consolidation approach, we determined that 57% of

equivalence classes were inter-PLD (contain identifiers

from more that one PLD), with the plurality of equiva-

lence classes containing identifiers from precisely two

PLDs (951 thousand, 44.1%); this indicates that explicit

owl:sameAs relations are commonly asserted between

PLDs. In the extended consolidation approach (which

of course subsumes the above results), we determined

that the percentage of inter-PLD equivalence classes

dropped to 43.6%, with the majority of equivalence

classes containing identifiers from only one PLD (1.59

million, 56.4%). The entity with the most diverse iden-

tifiers (the observable outlier on the x-axis in Figure 6)

was the person “Dan Brickley”—one of the founders

and leading contributors of the FOAF project—with

138 identifiers (67 URIs and 71 blank-nodes) minted in

47 PLDs; various other prominent community members

and some country identifiers also featured high on the

list.

24This site shut down on 2010/09/30.

14

Canonical Term (Lexically Lowest in Equivalence Class) Size Correct?

1 bnode37@http://a12iggymom.vox.com/profile/foaf.rdf 33,052 X

2 http://bio2rdf.org/dailymed_drugs:1000 8,481 �

3 http://ajft.org/rdf/foaf.rdf#_me 8,140 X

4 bnode4@http://174.129.12.140:8080/tcm/data/association/100 4,395 X

5 bnode1@http://aaa977.vox.com/profile/foaf.rdf 1,977 X

Table 6

Largest 5 equivalence classes after extended consolidation

Canonical Identifier BL# R#

1 <http://dblp.l3s.de/.../Tim Berners-Lee> 26 50

2 <genid:danbri> 10 138

3 <http://update.status.net/> 0 0

4 <http://www.ldodds.com/foaf/foaf-a-matic> 0 0

5 <http://update.status.net/user/1#acct> 0 6

Table 7

Equivalence class sizes for top five SWSE-ranked identifiers with

respect to baseline (BL#) and reasoning (R#) consolidation

In Table 7, we compare the consolidation of the top

five ranked identifiers in the SWSE system (see [24]).

The results refer respectively to (i) the (co-)founder

of the Web “Tim Berners-Lee”; (ii) “Dan Brickley”

as aforementioned; (iii) a meta-user for the micro-

blogging platform StatusNet which exports RDF; (iv)

the “FOAF-a-matic” FOAF profile generator (linked

from many diverse domains hosting FOAF profiles it

created); and (v) “Evan Prodromou”, founder of the

identi.ca/StatusNet micro-blogging service and plat-

form. We see a significant increase in equivalent iden-

tifiers found for these results; however, we also noted

that after reasoning consolidation, Dan Brickley was

conflated with a second person. 25

Note that the most frequently co-occurring PLDs in

our equivalence classes remained unchanged from Ta-

ble 3.

During the rewrite of the main corpus, terms in

151.77 million subject positions (13.58% of all sub-

jects) and 32.16 million object positions (3.53% of

non-rdf:type objects) were rewritten, giving a total of

183.93 million positions rewritten (1.8� the baseline

consolidation approach). In Figure 7, we compare the

re-use of terms across PLDs before consolidation, after

baseline consolidation, and after the extended reason-

ing consolidation. Again, although there is an increase

in re-use of identifiers across PLDs, we note that: (i) the

vast majority of identifiers (about 99%) still only appear

in one PLD; (ii) the difference between the baseline and

extended reasoning approach is not so pronounced. The

25Domenico Gendarmi with three URIs—one document assigns one

of Dan’s foaf:mbox sha1sum values (for danbri@w3.org) to

Domenico: http://foafbuilder.qdos.com/people/myriamleggieri.

wordpress.com/foaf.rdf

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1 10 100

nu
m

be
r

of
 te

rm
s

number of PLDs mentioning blank-node/URI term

baseline consolidated
raw data

reasoning consolidated

Fig. 7. Distribution of number of PLDs terms are referenced by,

for the raw, baseline consolidated, and reasoning consolidated data

(log/log)

most widely referenced consolidated entity—in terms

of unique PLDs—was “Evan Prodromou” as aformen-

tioned, referenced with six equivalent URIs in 101 dis-

tinct PLDs.

In summary, we posit that applying the consolida-

tion rules with respect to asserted data is a good ap-

proximation for our Linked Data corpus, and that in

comparison to the baseline consolidation over explicit

owl:sameAs, (i) the additional consolidation rules offer

a large bulk of intra-PLD consolidation of blank-nodes

with large equivalence-class sizes, which we believe to

be due to publishing practices whereby a given exporter

uses consistent inverse-functional property values in-

stead of URIs to uniquely identify entities across local

documents; and (ii) where there is only a minor expan-

sion (1.014�) in the number of URIs involved in the

consolidation.

6. Statistical Concurrence Analysis

In this section, we introduce methods for deriving

a weighted concurrence score between entities in the

Linked Data corpus: we define entity concurrence as the

sharing of outlinks, inlinks and attribute values, denot-

ing a specific form of similarity. We use these concur-

rence measures to materialise new links between such

15

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100 1000 10000 100000

nu
m

be
r

of
 c

la
ss

es

equivalence class size

baseline consolidation
reasoning consolidation

Fig. 5. Distribution of the number of identifiers per equivalence

classes for baseline consolidation and extended reasoning consoli-

dation (log/log)

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 10 100

nu
m

be
r

of
 c

la
ss

es

number of PLDs in equivalence class

baseline consolidation
reasoning consolidation

Fig. 6. Distribution of the number of PLDs per equivalence class

for baseline consolidation and extended reasoning consolidation

(log/log)

entities, and will also leverage the concurrence measures

in Section 7 for disambiguating entities. The methods

described herein are based on preliminary works we

presented in [26], where we:

– investigated domain-agnostic statistical methods for

performing consolidation and identifying equivalent

entities;

– formulated an initial small-scale (5.6 million triples)

evaluation corpus for the statistical consolidation us-

ing reasoning consolidation as a best-effort “gold-

standard”.

Our evaluation gave mixed results where we found

some correlation between the reasoning consolidation

and the statistical methods, but we also found that our

methods gave incorrect results at high degrees of con-

fidence for entities that were clearly not equivalent, but

intuitively shared many links and attribute values in

common. This of course highlights a crucial fallacy in

our speculative approach: in almost all cases, even the

highest degree of similarity/concurrence does not nec-

essarily indicate equivalence or co-reference (cf. [20,

Section 4.4]). Similar philosophical issues arise with re-

spect to handling transitivity for the weighted “equiva-

lences” derived [9,29].

However, deriving weighted concurrence measures

has applications other than approximative consolida-

tion: in particular, we can materialise named relation-

ships between entities which share a lot in common,

thus increasing the level of inter-linkage between en-

tities in the corpus. Also, as we will see later, we can

leverage the concurrence metrics to “rebuild” erroneous

equivalence classes found during the disambiguation

step. Thus, we present a modified version of the statis-

tical analysis presented in [26], describe a (novel) scal-

able and distributed implementation thereof, and finally

evaluate the approach with respect to finding highly-

concurring entities in our 1 billion triple Linked Data

corpus.

6.1. High-level approach

Our statistical concurrence analysis inherits similar

primary requirements to that imposed for consolidation:

the approach should be scalable, fully automatic, and

domain agnostic to be applicable in our scenario. Sim-

ilarly, with respect to secondary criteria, the approach

should be efficient to compute, should give high pre-

cision, and should give high recall. Compared to con-

solidation, high precision is not as critical for our sta-

tistical use-case: in SWSE, we aim to use concurrency

measures as a means of suggesting additional navigation

steps for users browsing the entities—if the suggestion

is uninteresting, it can be ignored, whereas incorrect

consolidation will often lead to conspicuously garbled

results, aggregating data on multiple disparate entities.

Thus, our requirements (particularly for scale) pre-

clude the possibility of complex analyses or any form

of pair-wise comparison, etc. Instead, we aim to de-

sign lightweight methods implementable by means of

distributed sorts and scans over the corpus. Our meth-

ods are designed around the following intuitions and

assumptions:

(i) the concurrency of entities is measured as a func-

tion of their shared pairs, be they predicate-

subject (loosely, inlinks), or predicate-object pairs

(loosely, outlinks or attribute values);

(ii) the concurrence measure should give a higher

weight to exclusive shared-pairs—pairs which are

typically shared by few entities, for edges (pred-

icates) which typically have a low in-degree/out-

16

degree;

(iii) with the possible exception of correlated pairs,

each additional shared pair should increase the

concurrency of the entities—a shared pair cannot

reduce the measured concurrency of the sharing

entities;

(iv) strongly exclusive property-pairs should be more

influential than a large set of weakly exclusive

pairs;

(v) correlation may exist between shared pairs—e.g.,

two entities may share an inlink and an inverse-

outlink to the same node (e.g., foaf:depiction,

foaf:depicts), or may share a large number of

shared pairs for a given property (e.g., two en-

tities co-authoring one paper are more likely to

co-author subsequent papers)—where we wish to

dampen the cumulative effect of correlation in the

concurrency analysis;

(vi) the relative value of the concurrency measure is

important; the absolute value is unimportant.

In fact, the concurrency analysis follows a similar

principle to that for consolidation, where instead of con-

sidering discrete functional and inverse-functional prop-

erties as given by the semantics of the data, we attempt

to identify properties which are quasi-functional, quasi-

inverse-functional, or what we more generally term ex-

clusive: we determine the degree to which the values

of properties (here abstracting directionality) are unique

to an entity or set of entities. The concurrency between

two entities then becomes an aggregation of the weights

for the property-value pairs they share in common.

To take a running example, consider the following

data:

dblp:AliceB10 foaf:maker ex:Alice .

dblp:AliceB10 foaf:maker ex:Bob .

ex:Alice foaf:gender "female" .

ex:Alice foaf:workplaceHomepage <http://wonderland.com> .

ex:Bob foaf:gender "male" .

ex:Bob foaf:workplaceHomepage <http://wonderland.com> .

ex:Claire foaf:gender "female" .

ex:Claire foaf:workplaceHomepage <http://wonderland.com> .

where we want to determine the level of (relative) con-

currency between three colleagues: ex:Alice, ex:Bob

and ex:Claire: i.e., how much do they coincide/concur

with respect to exclusive shared pairs.

6.1.1. Quantifying concurrence

First, we want to characterise the uniqueness of prop-

erties; thus, we analyse their observed cardinality and

inverse-cardinality as found in the corpus (in contrast to

their defined cardinality as possibly given by the formal

semantics):

Definition 1 (Observed Cardinality) Let G be an

RDF graph, p be a property used as a predicate in G
and s be a subject in G. The observed cardinality (or

henceforth in this section, simply cardinality) of p wrt

s in G, denoted CardG(p; s), is the cardinality of the

set fo 2 C j (s; p; o) 2 Gg.
Definition 2 (Observed Inverse-Cardinality) Let G
and p be as before, and let o be an object in G. The

observed inverse-cardinality (or henceforth in this sec-

tion, simply inverse-cardinality) of p wrt o in G, denoted

ICardG(p; o), is the cardinality of the set fs 2 U [B j
(s; p; o) 2 Gg.

Thus, loosely, the observed cardinality of a property-

subject pair is the number of unique objects it ap-

pears with in the graph (or unique triples it appears

in); letting Gex denote our example graph, then, e.g.,

CardGex
(foaf:maker; dblp:AliceB10) = 2. We see

this value as a good indicator of how exclusive (or selec-

tive) a given property-subject pair is, where sets of en-

tities appearing in the object position of low-cardinality

pairs are considered to concur more than those appear-

ing with high-cardinality pairs. The observed inverse-

cardinality of a property-object pair is the number of

unique subjects it appears with in the graph—e.g.,

ICardGex
(foaf:gender; "female") = 2. Both direc-

tions are considered analogous for deriving concurrence

scores—note however that we do not consider concur-

rence for literals (i.e., we do not derive concurrence for

literals which share a given predicate-subject pair; we

do of course consider concurrence for subjects with the

same literal value for a given predicate).

To avoid unnecessary duplication, we henceforth fo-

cus on describing only the inverse-cardinality statistics

of a property, where the analogous metrics for plain-

cardinality can be derived by switching subject and ob-

ject (that is, switching directionality)—we choose the

inverse direction as perhaps being more intuitive, in-

dicating concurrence of entities in the subject position

based on predicate-object pairs they share.

Definition 3 (Average Inverse-Cardinality) Let G be

an RDF graph, and p be a property used as a pred-

icate in G. The average inverse-cardinality of p, writ-

ten AICG(p), is the average of the non-zero inverse-

cardinalities of p in the graph G. Formally:

AICG(p) =
jf(s; o) j (s; p; o) 2 Ggj

jfo j 9s : (s; p; o) 2 Ggj

.

The average cardinality of a property is defined anal-

ogously. Note that the (inverse-)cardinality value of any

term appearing as a predicate in the graph is necessarily

17

greater-than or equal-to one: the numerator is by defini-

tion greater-than or equal-to the denominator. Taking an

example, AICGex
(foaf:gender) = 1:5, which can be

viewed equivalently as the average non-zero cardinali-

ties of foaf:gender (1 for "male" and 2 for "female"),

or the number of triples with predicate foaf:gender di-

vided by the number of unique values appearing in the

object position of such triples (32).

We call a property p for which we observe

AICG(p) � 1, a quasi-inverse-functional property with

respect to the graph G, and analogously properties for

which we observe ACG(p) � 1 as quasi-functional

properties. We see the values of such properties—

in their respective directions—as being very excep-

tional: very rarely shared by entities. Thus, we would

expect a property such as foaf:gender to have a

high AICG(p) since there are only two object-values

("male", "female") shared by a large number of en-

tities, whereas we would expect a property such as

foaf:workplaceHomepage to have a lower AICG(p)
since there are arbitrarily many values to be shared

amongst the entities; given such an observation, we then

surmise that a shared foaf:gender value represents a

weaker “indicator” of concurrence than a shared value

for foaf:workplaceHomepage.

Given that we deal with incomplete informa-

tion under the Open World Assumption underlying

RDF(S)/OWL, we also wish to weight the average (in-

verse) cardinality values for properties with a low num-

ber of observations towards a global mean—consider

a fictional property ex:maritalStatus for which we

only encounter a few predicate-usages in a given graph,

and consider two entities given the value "married":

given sparse inverse-cardinality observations, we may

naı̈vely over-estimate the significance of this property-

object pair as an indicator for concurrence. Thus, we

use a credibility formula as follows to weight properties

with few observations towards a global mean:

Definition 4 (Adjusted Average Inverse-Cardinality)

Let p be a property appearing as a predicate in the

graph G. The adjusted average cardinality of p with

respect to G is then

AAICG(p) =
AICG(p)� jG

�!p j+AICG � jG
!j

jG
�!p j+ jG!j

(1)

where jG
�!p j is the number of distinct objects that ap-

pear in a triple with p as a predicate (the denomi-

nator of Definition 3), AICG is the average inverse-

cardinality for all predicate-object pairs (formally,

AICG = jGj
jf(p;o)j9s:(s;p;o)2Ggj), and jG!j is the aver-

age number of distinct objects for all predicates in the

graph (formally, jG!j = jf(p;o)j9s:(s;p;o)2Ggj
jfpj9s;9o:(s;p;o)2Ggj)

Some reduction is possible, following AICG(p) �
jG

�!p j = jf(s; o) j (s; p; o) 2 Ggj denoting the number

of triples for which p appears as a predicate in graph

G, and AICG � jG
!j = jGj

jfpj9s;9o:(s;p;o)2Ggj , denoting

the average number of triples per predicate. We main-

tain Equation 1 in the given unreduced form as it more

clearly corresponds to the structure of a standard credi-

bility formula: the reading (AICG(p)) is dampened to-

wards a mean (AICG) by a factor determined by the

size of the sample used to derive the reading (jG
�!p j)

relative to the average sample size (jG!j).
Now, we move towards combining these metrics

to determine the concurrency of entities who share a

given non-empty set of property-value pairs. To do

so, we combine the adjusted average (inverse) car-

dinality values which apply generically to proper-

ties, and the (inverse) cardinality values which ap-

ply to a given property-value pair. For example, take

the property foaf:workplaceHomepage: entities that

share a value referential to a large company—e.g.,

http://google.com/—should not gain as much con-

currence as entities that share a value referential to a

smaller company—e.g., http://deri.ie/. Conversely,

consider a fictional property ex:citizenOf—which re-

lates a citizen to its country—for which we find many

observations in our corpus, returning a high AAIC

value, and consider that only two entities share the

value ex:Vanuatu for this property: given that our data

are incomplete, we can use the high AAIC value of

ex:citizenOf to determine that the property is usually

not exclusive, and that it is generally not a good indi-

cator of concurrence. 26

We start by assigning a coefficient to each pair (p; o)
and each pair (p; s) that occur in the dataset, where the

coefficient is an indicator of how exclusive that pair is:

Definition 5 (Concurrence Coefficients) The

concurrence-coefficient of a predicate-subject pair

(p; s) with respect to a graph G is given as:

CG(p; s) =
1

CardG(p; s)�AACG(p)

26Here, we try to distinguish between property-value pairs which are

exclusive in reality (i.e., on the level of what’s signified) and those

which are exclusive in the given graph. Admittedly, one could think

of counter-examples where not including the general statistics of

the property may yield a better indication of weighted concurrence,

particularly for generic properties which can be applied in many

contexts; for example, consider the exclusive predicate-object pair

(skos:subject, category:Koenigsegg vehicles) given

for a non-exclusive property.

18

and the concurrence-coefficient of a predicate-object

pair (p; o) with respect to a graph G is analogously

given as:

ICG(p; o) =
1

ICardG(p; o)�AAICG(p)

Again, please note that these coefficients fall into the

interval]0; 1] since the denominator, by definition, is

necessarily greater than one.

To take an example, let pwh =

foaf:workplaceHomepage and say that we compute

AAICG(pwh) = 7 from a large number of observations,

indicating that each workplace homepage in the graph

G is linked to by, on average, seven employees. Further,

let og = http://google.com/ and assume that og oc-

curs 2,000 times as a value for pwh: ICardG(pwh; og) =

2,000; now, ICG(pwh; og) =
1

2;000�7 = 0:00007. Also,

let od = http://deri.ie/ such that ICardG(pwh; od)
= 100; now, ICG(pwh; od) = 1

10�7 � 0:00143. Here,

sharing DERI as a workplace will indicate a higher

level of concurrence than analogously sharing Google.

Finally, we require some means of aggregating the

coefficients of the set of pairs that two entities share to

derive the final concurrence measure.

Definition 6 (Aggregated Concurrence Score)

Let Z = (z1; : : : zn) be a tuple such that for each

i = 1; : : : ; n, zi 2]0; 1]. The aggregated concurrence

value ACSn is computed iteratively: starting with

ACS0 = 0, then for each k = 1 : : : n, ACSk =
zk +ACSk�1 � zk �ACSk�1.

The computation of the ACS value is the same pro-

cess as determining the probability of two independent

events occurring—P (A_B) = P (A)+P (B)�P (A�
B)—which is by definition commutative and associa-

tive, and thus computation is independent of the order

of the elements in the tuple. It may be more accurate

to view the coefficients as fuzzy values, and the aggre-

gation function as a disjunctive combination in some

extensions of fuzzy logic [54].

However, the underlying coefficients may not be de-

rived from strictly independent phenomena: there may

indeed be correlation between the property-value pairs

that two entities share. To illustrate, we reintroduce a

relevant example from [26] shown in Figure 8, where

we see two researchers that have co-authored many pa-

pers together, have the same affiliation, and are based

in the same country.

This example illustrates three categories of concur-

rence correlation:

(i) same-value correlation where two entities may be

linked to the same value by multiple predicates

in either direction (e.g., foaf:made, dc:creator,

swperson:stefan-
decker

swperson:andreas-
harth

swpaper1:40

swpaper2:221

swpaper3:403

dbpedia:Ireland

sworg:nui-
galway

sworg:deri-
nui-galway

foaf:made

swrc:affiliaton

foaf:based_near

dc:creator
swrc:author
foaf:maker

foaf:made

dc:creator
swrc:author
foaf:maker

foaf:made
dc:creator

swrc:author
foaf:maker

foaf:member

foaf:member

swrc:affiliaton

Fig. 8. Example of same-value, inter-property and intra-property

correlation, where the two entities under comparison are highlighted

in the dashed box, and where the labels of inward-edges (with respect

to the principal entities) are italicised and underlined (from [26])

swrc:author, foaf:maker);

(ii) intra-property correlation where two entities

which share a given property-value pair are likely

to share further values for the same property (e.g.,

co-authors sharing one value for foaf:made are

more likely to share further values);

(iii) inter-property correlation where two entities

sharing a given property-value pair are likely

to share further distinct but related property-

value pairs (e.g., having the same value for

swrc:affiliation and foaf:based near).

Ideally, we would like to reflect such correlation in the

computation of the concurrence between the two enti-

ties.

Regarding same-value correlation, for a value with

multiple edges shared between two entities, we choose

the shared predicate edge with the lowest AA[I]C value

and disregard the other edges: i.e., we only consider the

most exclusive property used by both entities to link to

the given value and prune the other edges.

Regarding intra-property correlation, we apply a

lower-level aggregation for each predicate in the set of

shared predicate-value pairs. Instead of aggregating a

single tuple of coefficients, we generate a bag of tuples

Z = fZp1 ; : : : ; Zpng, where each element Zpi repre-

sents the tuple of (non-pruned) coefficients generated

for the predicate pi.
27 We then aggregate this bag as

follows:

ACS(Z) = ACS(ACS(Zpi �AA[I]C(pi))Zpi2Z)

where AA[I]C is either AAC or AAIC, dependant on

the directionality of the predicate-value pair observed.

Thus, the total contribution possible through a given

predicate (e.g., foaf:made) has an upper-bound set as

its AA[I]C value, where each successive shared value

for that predicate (e.g., each successive co-authored pa-

per) contributes positively (but increasingly less) to the

overall concurrence measure.

27For brevity, we omit the graph subscript.

19

Detecting and counteracting inter-property correla-

tion is perhaps more difficult, and we leave this as an

open question.

6.1.2. Implementing entity-concurrence analysis

We aim to implement the above methods using sorts

and scans, and wish to avoid any form of complex in-

dexing, or pair-wise comparison. Firstly, we wish to ex-

tract the statistics relating to the (inverse-)cardinalities

of the predicates in the data. Given that there are 23

thousand unique predicates found in the input corpus,

we assume that we can fit the list of predicates and

their associated statistics in memory—if such were not

the case, one could consider an on-disk map, where we

would expect a high cache hit-rate based on the distri-

bution of property occurrences in the data (cf. [24]).

Moving forward, we can calculate the necessary

predicate-level statistics by first sorting the data accord-

ing to natural order (s; p; o; c), and then scanning the

data, computing the cardinality (number of distinct ob-

jects) for each (s; p) pair, and maintaining the aver-

age cardinality for each p found. For inverse-cardinality

scores, we apply the same process, sorting instead by

(o; p; s; c) order, counting the number of distinct sub-

jects for each (p; o) pair, and maintaining the average

inverse-cardinality scores for each p. After each scan,

the statistics of the properties are adjusted according to

the credibility formula in Equation 4.

We then apply a second scan of the sorted corpus;

first we scan the data sorted in natural order, and for

each (s; p) pair, for each set of unique objectsOps found

thereon, and for each pair in

f(oi; oj) 2 U [B� U [B j oi; oj 2 Ops; oi < ojg

where < denotes lexicographical order, we output the

following sextuple to an on-disk file:

(oi; oj ;C(p; s); p; s;�)

where C(p; s) = 1
jOpsj�AAC(p)

. We apply the same pro-

cess for the other direction, outputting analogous sex-

tuples of the form:

(si; sj ; IC(p; o); p; o;+)

We call the sets Ops are their analogues Spo concur-

rence classes, denoting sets of entities which share

the given predicate-subject/predicate-object pair respec-

tively. Here, note that the ‘+’ and ‘�’ elements simply

demarcate and track the directionality from which the

tuple was generated, required for the final aggregation

of the co-efficient scores. Similarly, we do not imme-

diately materialise the symmetric concurrence scores,

where we instead do so at the end so as to forego du-

plication of intermediary processing.

Once generated, we can sort the two files of tuples

by their natural order, and perform a merge-join on the

first two elements—generalising the directional oi=si to

simply ei, each (ei; ej) pair denotes two entities which

share some predicate-value pairs in common, where we

can scan the sorted data and aggregate the final con-

currence measure for each (ei; ej) pair using the infor-

mation encoded in the respective tuples. We can thus

generate (trivially sorted) tuples of the form (ei; ej ; s),
where s denotes the final aggregated concurrence score

computed for the two entities; optionally, we can also

write the symmetric concurrence tuples (ej ; ei; s) which

can be sorted separately as required.

Note that the number of tuples generated is quadratic

with respect to the size of the respective concurrence

class, which becomes a major impediment for scalabil-

ity given the presence of large such sets—for example,

consider a corpus containing 1 million persons shar-

ing the value "female" for the property foaf:gender,

where we would have to generate 106�2�106

2 � 500 bil-

lion non-reflexive, non-symmetric concurrence tuples.

However, we can leverage the fact that such sets can

only invoke a minor influence on the final concurrence

of their elements, given that the magnitude of the set—

e.g., jSpoj—is a factor in the denominator of the com-

puted C(p; o) score, such that C(p; o) / 1
jSopj

. Thus,

in practice, we implement a maximum-size threshold

for the Spo and Ops concurrence classes: this thresh-

old is selected based on a practical upper limit for raw

similarity tuples to be generated, where the appropriate

maximum class size can trivially be determined along-

side the derivation of the predicate statistics. For the

purpose of evaluation, we choose to keep the number

of raw tuples generated at around �1 billion, and so set

the maximum concurrence class size at 38—we will see

more in Section 6.4.

6.2. Distributed implementation

Given the previous discussion, our distributed imple-

mentation is fairly straight-forward as follows:

(i) coordinate: the slave machines split their seg-

ment of the corpus according to a modulo-hash

function on the subject position of the data, sort

the segments, and send the split segments to the

peer determined by the hash-function; the slaves

simultaneously gather incoming sorted segments,

and subsequently perform a merge-sort of the seg-

ments;

20

(ii) coordinate: the slave machines apply the same

operation, this time hashing on object—triples

with rdf:type as predicate are not included in the

object-hashing; subsequently the slaves merge-

sort the segments ordered by object;

(iii) run: the slave machines then extract predicate-

level statistics, and statistics relating to the

concurrence-class-size distribution which are

used to decide upon the class size threshold;

(iv) gather/flood/run: the master machine gathers

and aggregates the high-level statistics generated

by the slave machines in the previous step and

sends a copy of the global statistics back to each

machine; the slaves subsequently generate the raw

concurrence-encoding sextuples as described be-

fore from a scan of the data in both orders;

(v) coordinate: the slave machines coordinate the lo-

cally generated sextuples according to the first el-

ement (join position) as before;

(vi) run: the slave machines aggregate the sextuples

coordinated in the previous step, and produce the

final non-symmetric concurrence tuples;

(vii) run: the slave machines produce the symmetric

version of the concurrence tuples, and coordinate

and sort on the first element.

Here, we make heavy use of the coordinate function to

align data according to the join position required for the

subsequent processing step—in particular, aligning the

raw data by subject and object, and then the concurrence

tuples analogously.

Note that we do not hash on the object position of

rdf:type triples: our raw corpus contains 206.8 mil-

lion such triples, and given the distribution of class

memberships, we assume that hashing these values will

lead to uneven distribution of data, and subsequently

uneven load balancing—e.g., 79.2% of all class mem-

berships are for foaf:Person, hashing on which would

send 163.7 million triples to one machine, which alone

is greater than the average number of triples we would

expect per machine (139.8 million). In any case, given

that our corpus contains 105 thousand unique values

for rdf:type, we would expect the average-inverse-

cardinality to be approximately 1,970—even for classes

with two members, the potential effect on concurrence

is negligible.

6.3. Performance evaluation

We apply our concurrence analysis over the consoli-

dated corpus derived in Section 5. The total time taken

was 13.9 h. Sorting, splitting and scattering the data ac-

cording to subject on the slave machines took 3.06 h,

with an average idle time of 7.7 min (4.2%). Subse-

quently, merge-sorting the sorted segments took 1.13 h,

with an average idle time of 5.4 min (8%). Analogously

sorting, splitting and scattering the non-rdf:type state-

ments by object took 2.93 h, with an average idle time

of 11.8 min (6.7%). Merge sorting the data by object

took 0.99 h, with an average idle time of 3.8 min (6.3%).

Extracting the predicate statistics and threshold infor-

mation from data sorted in both orders took 29 min,

with an average idle time of 0.6 min (2.1%). Generating

the raw, unsorted similarity tuples took 69.8 min with

an average idle time of 2.1 min (3%). Sorting and coor-

dinating the raw similarity tuples across the machines

took 180.1 min, with an average idle time of 14.1 min

(7.8%). Aggregating the final similarity took 67.8 min,

with an average idle time of 1.2 min (1.8%).

Table 8 presents a breakdown of the timing of the

task. Although this task requires some aggregation of

global-knowledge by the master machine, the volume

of data involved is minimal: a total of 2.1 minutes is

spent on the master machine performing various mi-

nor tasks (initialisation, remote calls, logging, aggre-

gation and broadcast of statistics). Thus, 99.7% of the

task is performed in parallel on the slave machine. Al-

though there is less time spent waiting for the mas-

ter machine compared to the previous two tasks, de-

riving the concurrence measures involves three ex-

pensive sort/coordinate/merge-sort operations to redis-

tribute and sort the data over the slave swarm. The slave

machines were idle for, on average, 5.8% of the to-

tal task time; most of this idle time (99.6%) was spent

waiting for peers. The master machines was idle for al-

most the entire task, with 99.7% waiting for the slave

machines to finish their tasks—again, interleaving a job

for another task would have practical benefits.

6.4. Results Evaluation

With respect to data distribution, after hashing on sub-

ject we observed an average absolute deviation (average

distance from the mean) of 176 thousand triples across

the slave machines, representing an average 0.13% de-

viation from the mean: near-optimal data distribution.

After hashing on the object of non-rdf:type triples,

we observed an average absolute deviation of 1.29 mil-

lion triples across the machines, representing an aver-

age 1.1% deviation from the mean; in particular, we

note that one machine was assigned 3.7 million triples

above the mean (an additional 3.3% above the mean).

Although not optimal, the percentage of data deviation

21

Category min % Total

Total execution time 835.4 100

Master (Local)

Executing 2.1 0.3

Miscellaneous 2.1 0.3

Idle (waiting for slaves) 833.3 99.7

Slave (Parallel)

Avg. Executing (total exc. idle) 786.6 94.2

Split/sort/scatter (subject) 175.9 21.1

Merge-sort (subject) 62.4 7.5

Split/sort/scatter (object) 164 19.6

Merge-sort (object) 55.6 6.6

Extract High-level Statistics 28.4 3.3

Generate Raw Concurrence Tuples 67.7 8.1

Cooordinate/Sort Concurrence Tuples 166 19.9

Merge-sort/Aggregate Similarity 66.6 8

Avg. Idle 48.8 5.8

Waiting for peers 46.7 5.6

Waiting for master 2.1 0.3

Table 8

Breakdown of timing of distributed concurrence analysis

given by hashing on object is still within the natural

variation in run-times we have seen for the slave ma-

chines during most parallel tasks.

In Figures 9(a) and 9(b), we illustrate the effect of

including increasingly large concurrence classes on the

number of raw concurrence tuples generated. For the

predicate-object pairs, we observe a power-law relation-

ship between the size of the concurrence class and the

number of such classes observed. Second, we observe

that the number of concurrences generated for each in-

creasing class size initially remains fairly static—i.e.,

larger class sizes give quadratically more concurrences,

but occur polynomially less often—until the point where

the largest classes which generally only have one oc-

currence is reached, and the number of concurrences

begins to increase quadratically. Also shown is the cu-

mulative count of concurrence tuples generated for in-

creasing class sizes, where we initially see a power-

law correlation, which subsequently begins to flatten as

the larger concurrence classes become more sparse (al-

though more massive).

For the predicate-subject pairs, the same roughly

holds true, although we see fewer of the very largest

concurrence classes: the largest concurrence class given

by a predicate-subject pair was 79 thousand, versus 1.9

million for the largest predicate-object pair, respectively

given by the pairs (kwa:map, macs:manual rameau lcsh)

and (opiumfield:rating, ""). Also, we observe some

“noise” where for milestone concurrence class sizes

(esp., at 50, 100, 1,000, 2,000) we observe an unusual

amount of classes. For example, there were 72 thousand

Predicate Objects Triples AAC

foaf:nick 150,433,035 150,437,864 1.000

lldpubmed:journal 6,790,426 6,795,285 1.003

rdf:value 2,802,998 2,803,021 1.005

eurostat:geo 2,642,034 2,642,034 1.005

eurostat:time 2,641,532 2,641,532 1.005

Table 9

Top five predicates with respect to lowest adjusted average cardi-

nality (AAC)

concurrence classes of precisely size 1,000 (versus 88

concurrence classes at size 996)—the 1,000 limit was

due to a FOAF exporter from the hi5.com which seem-

ingly enforces that limit on the total “friends count” of

users, translating into many users with precisely 1,000

values for foaf:knows. 28 Also for example, there were

5.5 thousand classes of size 2,000 (versus 6 classes of

size 1,999)—almost all of these were due to an exporter

from the bio2rdf.org domain which puts this limit on

values for the bio2rdf:linkedToFrom property. 29 We

also encountered unusually large numbers of classes ap-

proximating these milestones, such as 73 at 2,001. Such

phenomena explain the staggered “spikes”and “discon-

tinuities” in Figure 9(b), which can be observed to cor-

relate with such milestone values (in fact, similar but

less noticeable spikes are also present in Figure 9(a)).

These figures allow us to choose a threshold of

concurrence-class size given an upper bound on raw

concurrence tuples to generate. For the purposes of eval-

uation, we choose to keep the number of materialised

concurrence tuples at around 1 billion, which limits our

maximum concurrence class size to 38 (from which we

produce 1.023 billion tuples: 721 million through shared

(p; o) pairs and 303 million through (p; s) pairs.

With respect to the statistics of predicates, for the

predicate-subject pairs, each predicate had an average

of 25,229 unique objects for 37,953 total triples, giv-

ing an average cardinality of �1.5. We give the five

predicates observed to have the lowest adjusted average

cardinality in Table 9; note that two of these proper-

ties will not generate any concurrences since they are

perfectly unique to a given object. For the predicate-

object pairs, there was an average of 11,572 subjects

for 20,532 triples, giving an average inverse-cardinality

of �2.64; We give the five predicates observed to have

the lowest adjusted average inverse cardinality in Ta-

ble 10; again, four of these properties will not generate

any concurrences since they are perfectly unique to a

given subject.

28cf. http://api.hi5.com/rest/profile/foaf/100614697

29cf. http://bio2rdf.org/mesh:D000123Q000235

22

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

number of classes
 concurrence tuples required

cumulative tuples required

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

number of classes
 concurrence tuples required

cumulative tuples required
cut-off

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

(a) Predicate-object pairs

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

number of classes
 concurrence tuples required

cumulative tuples required

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

number of classes
 concurrence tuples required

cumulative tuples required
cut-off

 1

 100

 10000

 1e+006

 1e+008

 1e+010

 1e+012

 1e+014

 1 10 100 1000 10000 100000 1e+006 1e+007

co
un

t

concurrence class size

(b) Predicate-subject pairs

Fig. 9. Breakdown of potential concurrence classes given with respect to predicate-object pairs and predicate-subject pairs respectively, where

for each class size on the x-axis (si) we show the number of classes (ci); the raw non-reflexive, non-symmetric concurrence tuples generated

(spi = ci �
s2
i
+si

2
); a cumulative count of tuples generated for increasing class sizes (cspi = P

j�i

spj); and our cut-off (si = 38) which

we’ve chosen to keep the total number of tuples at �1 billion (log/log)

Predicate Subjects Triples AAIC

lldpubmed:meshHeading 2,121,384 2,121,384 1.009

opiumfield:recommendation 1,920,992 1,920,992 1.010

fb:type.object.key 1,108,187 1,108,187 1.017

foaf:page 1,702,704 1,712,970 1.017

skipinions:hasFeature 1,010,604 1,010,604 1.019

Table 10

Top five predicates with respect to lowest adjusted average inverse-

cardinality (AAIC)

Aggregation produced a final total of 636.9 million

weighted concurrence pairs, with a mean concurrence

weight of�0.0159. Of these pairs, 19.5 million involved

a pair of identifiers from different PLDs (3.1%), whereas

617.4 million involved identifiers from the same PLD;

however, the average confidence value for an intra-

PLD pair was 0.446, versus 0.002 for inter-PLD pairs—

although fewer intra-PLD concurrences are found, they

typically have higher confidences. 30

In Table 11, we give the labels of top five most

concurrent entities, including the number of pairs they

share—the confidence score for each of these pairs

was > 0:9999999. We note that they are all loca-

tions, where particularly on WIKIPEDIA (and thus fil-

tering through to DBpedia), properties with location

values are typically duplicated (e.g., dbp:deathPlace,

dbp:birthPlace, dbp:headquarters—properties that

are quasi-functional); for example, New York City

30Note that we apply this analysis over the consolidated data, and

thus this is an approximative reading for the purposes of illustration:

we extract the PLDs from canonical identifiers, which are choosen

based on arbitrary lexical ordering.

Entity Label 1 Entity Label 2 Concur

1 New York City New York State 791

2 London England 894

3 Tokyo Japan 900

4 Toronto Ontario 418

5 Philadelphia Pennsylvania 217

Table 11

Top five concurrent entities and the number of pairs they share

and New York State are both the dbp:deathPlace of

dbpedia:Isacc Asimov, etc.

In Table 12, we give a description of the concur-

rent entities found for the top-five ranked entities—

for brevity, again we show entity labels. In particu-

lar, we note that a large amount of concurrent en-

tities are identified for the highly-ranked persons.

With respect to the strongest concurrences: (i) Tim

and his former student Lalana share twelve primar-

ily academic links, coauthoring six papers; (ii) Dan

and Libby, co-founders of the FOAF project, share

87 links, primarily 73 foaf:knows relations to and

from the same people, as well as a co-authored pa-

per, occupying the same professional positions, etc.; 31

(iii) update.status.net and socialnetwork.ro share

a single foaf:accountServiceHomepage link from a

common user; (iv) similarly, the FOAF-a-matic and

foaf.me services share a single mvcb:generatorAgent

inlink; (v) finally, Evan and Stav share 69 foaf:knows

inlinks and outlinks exported from the identi.ca ser-

vice.

31Notably, Leigh Dodds (creator of the FOAF-a-matic service) is

linked by the property quaffing:drankBeerWith to both.

23

Ranked Entity #Con. “Closest” Entity Val.

Tim Berners-Lee 908 Lalana Kagal 0.83

Dan Brickley 2,552 Libby Miller 0.94

update.status.net 11 socialnetwork.ro 0.45

FOAF-a-matic 21 foaf.me 0.23

Evan Prodromou 3,367 Stav Prodromou 0.89

Table 12

Breakdown of concurrences for top five ranked entities, ordered by

rank, with, respectively, entity label, number of concurrent entities

found, the label of the concurrent entity with the largest degree, and

finally the degree value

7. Entity Disambiguation

We have already seen that—even by only exploit-

ing the formal logical consequences of the data through

reasoning—consolidation may already be imprecise.

Herein, we investigate an approach to identify ‘incor-

rect’ consolidation by means of inconsistency analy-

sis, and a subsequent repair strategy based on statistical

concurrence scores previously outlined.

7.1. High-level approach

The high-level approach is to see if the consolidation

of any entities conducted in the previous step lead to

any novel inconsistencies, and subsequently recant the

equivalences involved; thus, it is important to note that

our aim is not to repair inconsistencies in the data—we

refer the interested reader to [4] for some previous works

on this topic—but instead to repair incorrect consoli-

dation symptomised by inconsistency. Herein, we aim

to (i) describe what forms of inconsistency we detect

and how we detect them; (ii) characterise how inconsis-

tencies can be caused by consolidation using examples

from our corpus where possible; (iii) discuss the repair

of equivalence classes which have been determined to

cause inconsistency.

First, in order to track which data are consolidated

and which not, in the previous consolidation step we

output sextuples of the form:

(s; p; o; c; s0; o0)

where s, p, o, c, denote the consolidated quadruple con-

taining canonical identifiers in the subject/object posi-

tion as appropriate, and s0 and o0 denote the input iden-

tifiers prior to consolidation. 32

32We use syntactic shortcuts in our file to denote when s = s
0

and/or o = o
0. Maintaining the additional rewrite information during

the consolidation process is trivial, where the output of consolidating

subjects gives quintuples (s; p; o; c; s0), which are then sorted and

consolidated by o to produce the given sextuples.

To detect inconsistencies in the consolidated corpus,

we use the OWL 2 RL/RDF rules with the false conse-

quent [17] as listed in Table B.4. Again, we italicise the

labels of rules requiring new OWL 2 constructs, where

we expect few such axioms to appear on the Web: a

quick check of our corpus revealed that one document

provides 8 owl:AsymmetricProperty and 10 owl:Ir-

reflexiveProperty axioms 33 , and one directory gives

9 owl:AllDisjointClasses axioms 34 , and where we

found no other OWL 2 axioms relevant to the rules

in Table B.4. In any case, we include all rules with

the exception of cls-maxqc1, where as we will see in

Section 7.2, this rule is incompatible with our imple-

mentation which requires a consistent assertional join

variable for computing a merge-join operation—in any

case, again we found no such axoims in our corpus.

We also consider an additional rule, whose seman-

tics are indirectly axiomatised by the OWL 2 RL/RDF

rules (through prp-fp, dt-diff and eq-diff1), but which

we must support directly since we do not consider con-

solidation of literals:

?p a owl:FunctionalProperty .

?x ?p ?l1 , ?l2 .

?l1 owl:differentFrom ?l2 .

) false

where we underline the terminological pattern. To illus-

trate, we take an example from our corpus:

Terminological [http://dbpedia.org/data3/length.rdf]

dpo:length rdf:type owl:FunctionalProperty .

Assertional [http://dbpedia.org/data/Fiat_Nuova_500.xml]

dbpedia:Fiat_Nuova_500’ dpo:length "3.546"ˆˆxsd:double .

Assertional [http://dbpedia.org/data/Fiat_500.xml]

dbpedia:Fiat_Nuova’ dpo:length "2.97"ˆˆxsd:double .

(Note that herein, we will use the prime symbol [0] to de-

note identifiers considered coreferent by consolidation.)

Here we see two very closely related models of cars

consolidated in the previous step, but we now identify

that they have two different values for dpo:length—a

functional-property—and thus the consolidation raises

an inconsistency.

Note that we do not expect the owl:differentFrom

assertion to be materialised, but instead intend a rather

more relaxed semantics based on a heurisitic compar-

ison: given two (distinct) literal bindings for ?l1 and

?l2, we flag an inconsistency iff (i) the data values

of the two bindings are not equal (standard OWL se-

mantics); and (ii) their lower-case string value (mi-

nus language-tags and datatypes) are lexically unequal.

33http://models.okkam.org/ENS-core-vocabulary#

country_of_residence
34http://ontologydesignpatterns.org/cp/owl/

fsdas/

24

In particular, the relaxation is inspired by the def-

inition of the FOAF (datatype) functional properties

foaf:age, foaf:gender, and foaf:birthday, where the

range of these properties is rather loosely defined: a

generic range of rdfs:Literal is formally defined for

these properties, with informal recommendations to use

male/female as gender values, and MM-DD syntax for

birthdays, but not giving recommendations for datatype

or language-tags. The latter relaxation means that we

would not flag an inconsistency in the following data:

Terminological [http://xmlns.com/foaf/spec/index.rdf]

foaf:Person owl:disjointWith foaf:Document .

Assertional [fictional]

ex:Ted foaf:age 25 .

ex:Ted foaf:age "25" .

ex:Ted foaf:gender "male" .

ex:Ted foaf:gender "Male"@en .

ex:Ted foaf:birthday "25-05"ˆˆxsd:gMonthDay .

ex:Ted foaf:birthday "25-05" .

With respect to these consistency checking rules, we

consider the terminological data to be sound. 35 We

again only consider terminological axioms which are

authoritatively served by their source (see [25]); for ex-

ample the following axiom:

sioc:User owl:disjointWith foaf:Person .

would have to be served by a document which either

sioc:User or foaf:Person dereferences to (either the

FOAF or SIOC vocabulary since the axiom applies to

a combination of FOAF and SIOC assertional data).

Given a grounding for such a rule, we wish to anal-

yse the join positions to determine whether or not the

inconsistency is caused by consolidation; we are thus

only interested in join variables which appear at least

once in a consolidatable position (thus, we do not sup-

port dt-not-type) and where the join variable is “intra-

assertional” (exists twice in the assertional patterns).

First note that owl:sameAs patterns—particularly in

rule eq-diff1—are implicit in the consolidated data; e.g.,

consider:

Assertional [http://www.wikier.org/foaf.rdf]

wikier:wikier’ owl:differentFrom eswc2006p:sergio-fernandez’ .

where an inconsistency is implicitly given by

the owl:sameAs relation that holds between the

consolidated identifiers wikier:wikier’ and

eswc2006p:sergio-fernandez’. In this example,

there are two Semantic Web researchers, respectively

named “Sergio Fernández” 36 and “Sergio Fernández

35In any case, we always source terminological data from the raw

unconsolidated corpus.
36

http://www.informatik.uni-trier.de/˜ley/db/indices/a-tree/

f/Fern=aacute=ndez:Sergio.html

Anzuola” 37 who both participated in the ESWC 2006

conference, and who were subsequently conflated in the

“DogFood” export. 38 The former Sergio subsequently

added a counter-claim in his FOAF file, asserting the

above owl:differentFrom statement.

Other inconsistencies do not involve explicit

owl:sameAs patterns, a subset of which may require

“positive” reasoning to be detected; e.g.:

Terminological [http://xmlns.com/foaf/spec]

foaf:Person owl:disjointWith foaf:Organization .

foaf:knows rdfs:domain foaf:Person .

Assertional [http://identi.ca/w3c/foaf]

identica:48404’ foaf:knows identica:45563 .

Assertional [inferred by prp-dom]

identica:48404’ a foaf:Person

Assertional [http://data.semanticweb.org/organization/w3c/rdf]

semweborg:w3c’ a foaf:Organization .

where the two entities are initially consolidated due to

sharing the value http://www.w3.org/ for the inverse-

functional property foaf:homepage; the W3C is stated

to be a foaf:Organization in one document, and is in-

ferred to be a person from its identi.ca profile through

rule prp-dom; finally, the W3C is a member of two

disjoint classes, forming an inconsistency detectable by

rule cax-dw. 39

In order to resolve inconsistencies, we make three

simplifying assumptions:

(i) the steps involved in the consolidation can be

rederived with knowledge of direct inlinks and

outlinks of the consolidated entity, or reasoned

knowledge derived therefrom;

(ii) inconsistencies are caused by pairs of consoli-

dated identifiers;

(iii) we repair individual equivalence classes and do

not consider the case where repairing one such

class may indirectly repair another.

With respect to the first item, our current implemen-

tation will be performing a repair of the equivalence

class based on knowledge of direct inlinks and outlinks,

available through a simple merge-join as used in the

previous section; this thus precludes repair of consoli-

dation found through rule cls-maxqc2, which also re-

quires knowledge about the class memberships of the

outlinked node. With respect to the second item, we say

that inconsistencies are caused by pairs of identifiers—

what we term incompatible identifiers—such that we

37
http://www.informatik.uni-trier.de/˜ley/db/indices/a-tree/

a/Anzuola:Sergio_Fern=aacute=ndez.html

38
http://data.semanticweb.org/dumps/conferences/

eswc-2006-complete.rdf

39Note that this also could be viewed as a counter-example for

using inconsistencies to recant consolidation, where arguably the

two entities are coreferent from a practical perspective, even if

“incompatible” from a symbolic perspective.

25

do not consider inconsistencies caused with respect to a

single identifier (inconsistencies not caused by consol-

idation) and do not consider the case where the align-

ment of more than two identifiers are required to cause

a single inconsistency (not possible in our rules) where

such a case would again lead to a disjunction of repair

strategies. With respect to the third item, it is possible

to resolve a set of inconsistent equivalence classes by

repairing one; for example, consider rules with multiple

“intra-assertional” join-variables (prp-irp, prp-asyp)

which can have explanations involving multiple consol-

idated identifiers as follows:

Terminological [fictional]

foaf:made owl:propertyDisjointWith foaf:maker .

Assertional [fictional]

ex:AZ" foaf:maker ex:entcons’ .

dblp:Antoine_Zimmermann" foaf:made dblp:HoganZUPD13’ .

where both equivalences together constitute an incon-

sistency. Repairing one equivalence class would repair

the inconsistency detected for both: we give no special

treatment to such a case, and resolve each equivalence

class independently—in any case, we find no such in-

cidences in our corpus: these inconsistencies require (i)

axioms new in OWL 2 (rules prp-irp, prp-asyp, prp-

pdw and prp-adp); (ii) alignment of two consolidated

sets of identifiers in the subject/object positions. Note

that such cases can also occur given the recursive nature

of our consolidation—consolidating one set of identi-

fiers may lead to alignments in the join positions of the

consolidation rules in the next iteration—however, we

did not encounter such recursion during the consolida-

tion phase.

The high-level approach to repairing inconsistent

consolidation is as follows:

(i) rederive and build a non-transitive, symmetric

graph of equivalences between the identifiers in

the equivalence class, based on the inlinks and

outlinks of the consolidated entity;

(ii) discover identifiers which together cause incon-

sistency and must be separated, generating a new

seed equivalence class for each, and breaking the

direct links between them;

(iii) assign the remaining identifiers into one of the

seed equivalence classes based on:

(a) minimum distance in the non-transitive

equivalence class;

(b) if tied, use a concurrence score.

Given the simplifying assumptions, we can formalise

the problem thus: we denote the graph of non-transitive

equivalences for a given equivalence class as a weighted

graph G = (V;E; !) such that V � B [U is the set of

vertices, E � B [U � B [U is the set of edges, and

! : E 7! N� R is a weighting function for the edges.

Our edge weights are pairs (d; c) where d is the number

of sets of input triples in the corpus which allow to di-

rectly derive the given equivalence relation by means of

a direct owl:sameAs assertion (in either direction), or a

shared inverse-functional object, or functional subject—

loosely, the independent evidences for the relation given

by the input graph, excluding transitive owl:sameAs se-

mantics; c is the concurrence score derivable between

the unconsolidated entities and is used to resolve ties

(we would expect many strongly connected equivalence

graphs where, e.g., the entire equivalence class is given

by a single shared value for a given inverse-functional

property, and thus require the additional granularity of

concurrence for repairing the data in a non-trivial man-

ner). We define a total lexicographical order over these

pairs.

Given an equivalence class Eq � U [B which we

perceive to cause a novel inconsistency—i.e., an in-

consistency derivable by the alignment of incompati-

ble identifiers—we first derive a collection of sets C =
fC1; : : : ; Cng, C � 2U[B, such that each Ci 2 C,

Ci � Eq denotes an unordered pair of incompatible

identifiers.

We then apply a simple consistent clustering of the

equivalence class, loosely following the notions of a

minimal cutting (see, e.g., [46]). For Eq, we create an

initial set of singleton sets Eq0, each containing an

individual identifier in the equivalence class. Now let

(Ei; Ej) denote the aggregated weight of the edge

considering the merge of the nodes of Ei and the nodes

of Ej in the graph: the pair (d; c) such that d denotes

the unique evidences for equivalence relations between

all nodes in Ei and all nodes in Ej and such that c
denotes the concurrence score considering the merge of

entities in Ei and Ej—intuitively, the same weight as

before, but applied as if the identifiers inEi andEj were

consolidated in the graph. We can apply the following

clustering:

– for each pair of sets Ei; Ej 2 Eqn such that

@fa; bg 2 C : a 2 Eqi; b 2 Eqj (i.e., consistently

mergeable subsets) identify the weights of
(Ei; Ej)
and order the pairings;

– in descending order with respect to the above weights,

merge Ei; Ej pairs—such that neither Ei or Ej have

already been merged in this iteration—producing

En+1 at iteration’s end;

– iterate over n until fixpoint.

Thus, we determine the pairs of incompatible iden-

tifiers which must necessarily be in different repaired

equivalence classes, deconstruct the equivalence class,

and then begin reconstructing the repaired equivalence

26

class by iteratively merging the most strongly linked in-

termediary equivalence classes which will not contain

incompatible identifers. 40

7.2. Implementing disambiguation

The implementation of the above disambiguation pro-

cess can be viewed on two levels: the macro level which

identifies and collates the information about individual

equivalence classes and their respectively consolidated

inlinks/outlinks, and the micro level which repairs indi-

vidual equivalence classes.

On the macro level, the task assumes input data

sorted by both subject (s; p; o; c; s0; o0) and object

(o; p; s; c; o0; s0), again such that s; o represent canon-

ical identifiers and s0; o0 represent the original identi-

fiers as before. Note that we also require the asserted

owl:sameAs relations encoded likewise. Given that all

the required information about the equivalence classes

(their inlinks, outlinks, derivable equivalences and orig-

inal identifiers) are gathered under the canonical identi-

fiers, we can apply a straight-forward merge-join on s-o
over the sorted stream of data and batch consolidated

segments of data.

On a micro level, we buffer each individual consoli-

dated segment into an in-memory index; currently, these

segments fit in memory, where for the largest equiv-

alence classes we note that inlinks/outlinks are com-

monly duplicated—if this were not the case, one could

consider using an on-disk index which should be fea-

sible given that only small batches of the corpus are

under analysis at each given time. We assume access to

the relevant terminological knowledge required for rea-

soning, and the predicate-level statistics derived during

from the concurrence analysis. We apply scan-reasoning

and inconsistency detection over each batch, and for ef-

ficiency, skip over batches which are not symptomised

by incompatible identifiers.

For equivalence classes containing incompatible

identifiers, we first determine the full set of such pairs

through application of the inconsistency detection rules:

usually, each detection gives a single pair, where we

ignore pairs containing the same identifier (i.e., detec-

tions which would equally apply over the unconsoli-

dated data). We check the pairs for a trivial solution: if

all identifiers in the equivalence class appear in some

pair, we check (i) whether the graph formed by the pairs

is strongly connected, in which case, the equivalence

40We note the possibility of a dual correspondence between our

“bottom-up” approach to repair and the “top-down” minimal hitting

set techniques introduced by Reiter [40].

class must necessarily be completely disbanded; or (ii)

that one identifier is strongly connected to all identifiers

in the equivalence class, in which case the strongly con-

nected identifier can be removed from the equivalence

class to derive the repair.

For non-trivial repairs, we extract the explicit

owl:sameAs relations (which we view as directionless)

and reinfer owl:sameAs relations from the consolidation

rules, encoding the subsequent graph. We label edges in

the graph with a set of hashes denoting the input triples

required for their derivation, such that the cardinality

of the hashset corresponds to the primary edge weight.

We subsequently use a priority-queue to order the edge-

weights, and only materialise concurrency scores in the

case of a tie. Nodes in the equivalence graph are merged

by combining unique edges and merging the hashsets

for overlapping edges. Using these operations, we can

apply the aformentioned process to derive the final re-

paired equivalence classes.

In the final step, we encode the repaired equivalence

classes in memory, and perform a final scan of the cor-

pus (in natural sorted order), revising identifiers accord-

ing to their repaired canonical term.

7.3. Distributed implementation

Distribution of the task becomes straight-forward, as-

suming that the slave machines have knowledge of ter-

minological data, predicate-level statistics, and already

have the consolidation encoding sextuples sorted and

coordinated by hash on s and o. Note that all of these

data are present on the slave machines from previous

tasks; for the concurrence analysis, we in fact maintain

sextuples during the data preparation phase (although

not required by the analysis).

Thus, we are left with two steps:

– run: each slave machine performs the above pro-

cess on it’s segment of the corpus, applying a merge-

join over the data sorted by (s; p; o; c; s0o0) and

(o; p; s; c; o0; s0) to derive batches of consolidated

data, which are subsequently analysed, diagnosed,

and a repair derived in memory;

– gather/run: the master machine gathers all repair in-

formation from all slave machines, and floods the

merged repairs to the slave machines; the slave ma-

chines subsequently perform the final repair of the

corpus.

27

Category min % Total

Total execution time 234.8 100

Master (Local)

Executing 1 0.4

Miscellaneous 1 0.4

Idle (waiting for slaves) 99.6 99.6

Slave (Parallel)

Avg. Executing (total exc. idle) 205.5 87.5

Identify inconsistencies and repairs 147.8 62.9

Repair Corpus 57.7 24.6

Avg. Idle 29.3 12.5

Waiting for peers 28.3 12.1

Waiting for master 1 0.4

Table 13

Breakdown of timing of distributed disambiguation and repair

7.4. Performance Evaluation

The total time taken for inconsistency-based disam-

biguation was 3.91 h. The inconsistency and equiva-

lence class repair analysis took 2.87 h, with a significant

average idle time of 24.4 min (14.16%): in particular,

certain large batches of consolidated data took signifi-

cant amounts of time to process, particularly to reason

over. 41 Subsequently repairing the corpus took 1.03 h,

with an average idle time of 3.9 min.

In Table 13, we again summarise the timing of the

task. Note that the aggregation of the repair infor-

mation took a negligible amount of time, and where

only a total of one minute is spent on the slave ma-

chine. Most notably, load-balancing is somewhat of

an issue, causing slave machines to be idle for, on

average, 12.5% of the total task time, mostly wait-

ing for peers. This percentage—and the general load-

balancing characteristic—would likely increase further,

given more machines, or a higher scale of data.

7.5. Results Evaluation

It seems that our discussion of inconsistency repair

has been somewhat academic: from the total of 2.82 mil-

lion consolidated batches to check, we found 523 equiv-

alence classes (0.019%) causing novel inconsistency.

Of these, 23 were detected through owl:differentFrom

assertions, 94 were detected through distinct literal val-

ues for inverse-functional properties, and 406 were de-

tected through disjoint-class constraints. We list the top

41The additional expense is due to the relaxation of duplicate de-

tection: we cannot consider duplicates on a triple level, but must

consider uniqueness based on the entire sextuple to derive the in-

formation required for repair. Thus, we must apply many duplicate

inferencing steps.

Functional Property Detections

foaf:gender 56

foaf:age 32

dbo:height/dbo:height/dbo:wheelbase/dbo:width 4

atomowl:body 1

loc:address 1

Table 14

Breakdown of inconsistency detections for functional-properties,

where dpo: properties gave identical detections

Disjoint Class 1 Disjoint Class 2 Detections

foaf:Document foaf:Person(/foaf:Agent) 312

ecs:Group ecs:Individual 37

foaf:Organization foaf:Person 24

foaf:Document foaf:Agent 23

foaf:Person foaf:Project 7

Table 15
Breakdown of inconsistency detections for disjoint-classes

five functional-properties given non-distinct literal val-

ues in Table 14 and the top five disjoint classes in Ta-

ble 15—note that the dpo: functional-properties gave

identical detections, and that the class foaf:Person is a

subclass of foaf:Agent, and thus an identical detection

is given twice. 42 All equivalence classes were broken

into two repaired sub-equivalence class—further, still

all had a trivial repair given by separating a single iden-

tifier appearing in each incompatible pair (with all orig-

inal identifiers appearing in some pair). Thus, for the

moment, our repair strategy is purely academic. 43

8. Critical Discussion

In this section, we provide critical discussion of our

approach, following the dimensions of the requirements

listed at the outset.

With respect to scale, on a high level, our primary

means of organising the bulk of the corpus is external-

sorts, characterised by the linearithmic time complexity

O(n�log(n)); external-sorts do not have a critical main-

memory requirement, and are efficiently distributable.

Our primary means of accessing the data is via linear

scans. With respect to the individual tasks:

– our current baseline consolidation approach relies

on an in-memory owl:sameAs index: however we

42Further, note that between the time of the crawl and the time of

writing, the FOAF vocabulary has removed disjointness constraints

between the foaf:Document and foaf:Person/foaf:Agent

classes.
43We also considered a dual form of the concurrence to detect in-

correct equivalence classes: for example, to use the quasi-functional

nature of foaf:name to repair consolidated entities with multiple

such values. However, we noted in preliminary results that such anal-

ysis gave poor results for our corpus, where we noticed, for example,

that (indeed, highly ranked) persons with multiple foaf:weblog

values—itself measured to be a quasi-functional property—would

be identified as incorrect.

28

demonstrate an on-disk variant in the extended con-

solidation approach;

– the extended consolidation currently loads termino-

logical data into memory, which is required by all ma-

chines: if necessary, we claim that an on-disk termi-

nological index would offer good performance given

the distribution of class and property memberships,

where we posit that a high cache-hit rate would be

enjoyed;

– for the entity concurrency analysis, the predicate

level statistics required by all machines is small in

volume—for the moment, we do not see this as a se-

rious factor in scaling-up;

– for the inconsistency detection, we identify the same

potential issues with respect to terminological data;

also, given large equivalence classes with a high num-

ber of inlinks and outlinks, we would encounter main-

memory problems, where we posit that an on-disk

index could be applied assuming a reasonable upper

limit on batch sizes.

With respect to efficiency:

– the on-disk aggregation of owl:sameAs data for

the extended consolidation has proven to be a

bottleneck—for efficient processing at higher levels

of scale, distribution of this task would we a prior-

ity, which should be feasible given that again, the

primitive operations involved are external sorts and

scans, with non-critical in-memory indices to accel-

erate reaching the fixpoint;

– although we typically observe terminological data to

constitute a small percentage of Linked Data corpora

(0.1% in our corpus; cf. [23,25]) at higher scales,

aggregating the terminological data for all machines

may become a bottleneck, and distributed approaches

to perform such would need to be investigated; sim-

ilarly, as we have seen, large terminological docu-

ments can cause load-balancing issues; 44

– for the concurrence analysis and inconsistency detec-

tion, data are distributed according to a modulo-hash

function on the subject and object position, where

we do not hash on the objects of rdf:type triples—

although we demonstrated even data distribution by

this approach for our current corpus, this may not

hold in the general case;

– as we have already seen for our corpus and ma-

chine count, the complexity of repairing consolidated

44We reduce terminological statements on a document-by-document

basis according to unaligned blank-node positions: for example, we

prune RDF collections identified by blank-nodes which do not join

with, e.g., an owl:unionOf axiom.

batches may become an issue given large equivalence

class sizes;

– there is some notable idle time for our machines,

where the total cost of running the pipeline could be

reduced by interleaving jobs.

With the exception of our manually derived black-

list for values of (inverse-)functional-properties, the

methods presented herein have been entirely domain-

agnostic and fully automatic.

One major open issue is the question of precision and

recall. Given the nature of the tasks—particularly the

scale and diversity of the datasets—we posit that deriv-

ing an appropriate gold standard is currently infeasible:

– the scale of the corpus precludes manual or semi-

automatic processes;

– any automatic process for deriving the gold standard

would make redundant the approach to test;

– results derived from application of the methods on

subsets of manually verified data would not be equat-

able to the results derived from the whole corpus;

– even assuming a manual approach were feasible, of-

tentimes there is no objective criteria for determining

what precisely signifies what—the publisher’s origi-

nal intent is often ambiguous.

Thus, we prefer symbolic approaches to consolidation

and disambiguation which are predicated on the formal

semantics of the data, where we can appeal to the fact

that incorrect consolidation is due to erroneous data,

not an erroneous approach. Without a formal means of

sufficiently evaluating the results, we employ statisti-

cal methods for applications where precision is not a

primary requirement. In general, we posit that for the

corpora we target, such research can only find it’s real

litmus test when integrated into a system with a critical

user-base.

Finally, we have only briefly discussed issues relat-

ing to web-tolerance: e.g., spamming or conflicting

data. With respect to such consideration, we currently

(i) derive and use a blacklist for common void values;

(ii) consider authority for terminological data [23,25];

and (iii) try to detect erroneous consolidation through

consistency verification. One might question an ap-

proach which trusts all equivalences asserted or derived

from the data. Along these lines, we track the original

pre-consolidation identifiers (in the form of sextuples)

which can be used to revert erroneous consolidation. In

fact, similar considerations can be applied more gener-

ally to the re-use of identifiers across sources: giving

special consideration to the consolidation of third party

data about an entity is somewhat fallacious without also

considering the third party contribution of data using a

consistent identifier. In both cases, we track the context

29

of (consolidated) statements which at least can be used

to verify or post-process sources. 45 Currently, the cor-

pus we evaluate our methods against does not exhibit

any significant deliberate spamming, but rather indelib-

erate noise—we leave more mature means of handling

spamming for future work (as required).

9. Related work

Work relating to entity consolidation has been re-

searched in the area of databases for a number of years,

aiming to identify and process co-referent signifiers,

with works under the titles of record linkage, record fu-

sion, merge-purge, instance fusion, and duplicate iden-

tification, and (ironically) a plethora of variations there-

upon; see [33,30,7,3,1,2], etc., and a survey at [12].

Unlike our approach, which leverages the declarative

semantics of the data in order to be domain agnostic,

such systems usually operate given closed schemas—

similarly, they typically focus on string-similarity mea-

sures and statistical analysis. Haas et al. note that “in

relational systems where the data model does not pro-

vide primitives for making same-as assertions[...] there

is a value-based notion of identity” [18]. However, we

note that some works have focussed on leveraging se-

mantics for such tasks in relation databases; e.g., Fan et

al. [13] leverage domain knowledge to match entities,

where interestingly they state “[r]eal life data is typi-

cally dirty... [thus] it is often necessary to hinge on the

semantics of the data”.

Some other works—moreso related to Information

Retrieval and Natural Language Processing—focus on

extracting coreferent entity names from unstructured

text, tying in moreso with aligning the results of Named

Entity Recognition where for example, [44] presents an

approach to identify coreferences from a corpus of 3

million natural language “mentions” of persons, where

they build compound “entities” out of the individual

mentions.

With respect to RDF, one area of research also goes

by the name instance matching: for example, in 2009,

the Ontology Alignment Evaluation Initiative 46 intro-

duced a new test track on instance matching 47 .

In [34], the authors present the KnoFuss architec-

ture for aligning data on an assertional level; they iden-

45Although it must be said, we currently do not track the steps used

to derive the equivalences involved in consolidation, which would

be expensive to materialise and maintain.
46OAEI. http://oaei.ontologymatching.org/
47Instance data matching. http://www.instancematching.

org/

tify a three phase process involving coreferencing (find-

ing equivalent individuals), conflict detection (finding

inconsistencies caused by the integration), and incon-

sistency resolution. For the coreferencing, the authors

introduce and discuss approaches incorporating string

similarity measures and class-based machine learning

techniques. Although the high-level process is similar

to our own, the authors do not address scalability con-

cerns.

In [42], Scharffe et al. identify four steps in align-

ing datasets: align, interlink, fuse and post-process. The

align process identifies equivalences between entities

in the two datasets, the interlink process materialises

owl:sameAs relations between the two datasets, the

aligning step merges the two datasets (on both a termi-

nological and assertional level, possibly using domain-

specific rules), and the post-processing phase subse-

quently checks the consistency of the output data. Al-

though parts of this process echoes our own, they have

yet to demonstrate large-scale evaluation, focussing on

datasets containing 2.5 thousand entities.

In [35], the authors present an approach for align-

ing two A-Boxes described using the same T-Box; in

particular they leverage similarity measures introdued

in [48], and define an optimisation problem to iden-

tify the alignment which generates the most highest

weighted similarity between the two A-Boxes under

analysis: they use Integer Linear Programming to gen-

erate the optimal alignment, encoding linear constraints

to enforce valid (i.e., consistency preserving), one-to-

one, functional mappings. Although they give perfor-

mance results, they do not directly address scalability.

Their method for comparing entities is similar in prac-

tice to ours: they measure the “overlapping knowledge”

between two entities, counting how many assertions are

true about both. The goal is to match entities such that:

the resulting consolidation is consistent; the measure of

overlap is maximal.

Like us, Castano et al. [6] approach instance match-

ing from two distinct perspectives: (i) determine coref-

erent identifiers; (ii) to detect similar individuals based

on the data they share. Much of their work is simi-

lar in principle to ours: in particular, they use reason-

ing for identifying equivalences and use a statistical ap-

proach for identifying properties “with high identifica-

tion power”. They do not consider use of inconsistency

detection for disambiguating entities, and perhaps more

critically, only evaluate with respect to a dataset con-

taining �15 thousand entities.

With respect to URI naming on the Web, Bouquet

et al. [5] argue for a centralised naming architecture

for minting URI signifiers for the Web; we see such

30

a centralised “‘naming authority” as going against the

ad-hoc, decentralised, scale-free nature of the Web.

The Sindice and Sig.ma search systems internally

uses inverse-functional properties to find equivalent

identifiers [36,50]. Sindice investigates some bespoke

“schema-level” reasoning to identify a wider range of

inverse-functional properties [36]; however, compared

to our approach, they (i) do not use functional properties

or cardinality constraints; (ii) would still miss equiva-

lences where identifiers use the same value with differ-

ent inverse-functional properties, and where, e.g., those

properties are in an equivalence or subsumption rela-

tionship.

Online systems RKBExplorer [16,15] 48 ,

<sameAs> 49 and ObjectCoref [8] 50 offer on-demand

querying for owl:sameAs relations found for a given

input URI, which they internally compute and store;

the former focus on publishing owl:sameAs relations

for authors and papers in the area of scientific pub-

lishing, with the latter two systems offering more

general owl:sameAs relationships between Linked Data

identifiers. In fact, many of the owl:sameAs relations

we consume are published as Linked Data by the

RKBExplorer system.

In [52], the authors present the Silk framework for

creating and maintaining inter-linkage between domain-

specific RDF datasets; in particular, this framework

provides publishers with a means of discovering and

creating owl:sameAs links between data sources us-

ing domain-specific rules and parameters. Thereafter,

publishers can integrate discovered links into their ex-

ports, enabling better linkage of the data and subse-

quent consolidation by data consumers: this framework

goes hand-in-hand with our approach, producing the

owl:sameAs relations which we consume.

Popitsch and Haslhofer present discussion on the

problem of broken links in Linked Data, identifying

structurally broken links (the Web of Data’s version of

a “deadlink”) and semantically broken links, where the

original meaning of an identifier changes after a link has

been remotely asserted [38]. The authors subsequently

present the DSNotify system, which monitors dynam-

icity over a given subset of Linked Data and can detect

and act upon changes—e.g., to notify another agent or

correct broken links—and can also be used to indirectly

link the dynamic target.

Various authors have looked at applying consolida-

tion over domain-specific RDF corpora: e.g., Sleeman

48http://www.rkbexplorer.com/sameAs/
49http://sameas.org/
50http://ws.nju.edu.cn/objectcoref/

and Finin look at using machine learning techniques

to consolidate FOAF personal profile information [45];

Shi et al. similarly look at FOAF-specific alignment

techniques [43] using inverse-functional properties and

fuzzy string matching; Jentzsch et al. examine align-

ment of published drug data [27]; 51 Raimond et al.

look at interlinking RDF from the music-domain [39];

Monaghan and O’ Sullivan apply consolidation to photo

annotations expressed in RDF [32].

Salvadores et al. [41] present the LinksB2N system

which aims to perform scalable integration of RDF data,

particularly focussing on evaluation over corpora from

the marketing domain; however, their methods are not

specific to this domain. They do not leverage the se-

mantics of the data for performing consolidation, in-

stead using similarity measures, based on the idea that

“the unique combination of RDF predicates associated

with RDF resources is what defines their existence as

unique” [41]. This is a similar intuition to that behind

our concurrence analysis, but we again question the va-

lidity of such an assumption for consolidation, partic-

ularly given incomplete data and the Open World As-

sumption underlying RDF(S)/OWL—we view an RDF

resource as a description of something signified, and

would wish to avoid conflating unique signifiers, even

if they match precisely with respect to their description.

In [19], the authors discuss the semantics and cur-

rent usage of owl:sameAs in Linked Data, discussing

issues relating to identity, and providing four categories

of owl:sameAs usage to relate entities which are closely

related, but for which the semantics of owl:sameAs—

particularly substitution—does not quite hold; in fact,

this paper serves as a philosophical counterpoint to those

aforementioned related works which translate weighted

similarities into weighted equivalences. Needless to say,

we do not discount such approaches—they may of

course of course derive useful and correct alignments

not possible through a purely symbolic analysis—but

would be cautious when considering using such an ap-

proach over arbitrary Linked Data, particularly given the

inherent difficulties in evaluating the precision thereof.

In [10], the authors present the idMesh system, which

leverages user-defined associations and probabalistic

methods to derive entity-level relationships, including

resolution of conflicts; they also delineate entities based

on “temporal discrimination”, whereby coreferent en-

tities may predate or postdate one another, capturing

a description thereof at a particular point in time. The

51In fact, we believe that this work generates the incorrect re-

sults observable in Table 2; cf. http://groups.google.com/group/

pedantic-web/browse_thread/thread/ad740f7052cc3a2d.

31

idMesh system itself is designed over a peer-to-peer net-

work with centralised coordination. However, evalua-

tion is over synthetic data, where they only demonstrate

a maximum scale involving 8,000 entities and 24,000

links, over 400 machines: the evaluation of performance

focusses on network traffic and message exchange as

opposed to time.

In [28], the authors apply reasoning over 0.9 bil-

lion Linked Data triples using the BigOWLIM reasoner;

however, this dataset is manually selected as a merge of

a number of smaller, known datasets as opposed to an

arbitrary corpus. They discuss optimisations similar to

our canonicalisation as a necessary means of avoiding

the quadratic nature of traditional replacement seman-

tics for owl:sameAs. 52

With respect to distributed consolidation, in [51],

Urbani et al. introduced the WebPie system [51]

which uses MapReduce to perform pD* reasoning [49]

using a cluster of commodity hardware similar to

ourselves—the pD* ruleset contains rules for han-

dling owl:sameAs replacement, inverse-functional prop-

erties and functional-properties, but not for cardinali-

ties (which, in any case we demonstrated to be inef-

fective over out corpus). The authors also discuss a

similar approach to our canonicalisation for handling

equivalent identifiers. They demonstrate their methods

over 100 billion triples of synthetic LUBM data over

64 machines—however, they do not present evaluation

over Linked Data, do not perform any form of simil-

iarity or concurrence measures, do not consider incon-

sistency detection (not given by the pD* ruleset, or by

their corpora) and generally have a somewhat different

focus: scalable distributed rule-based materialisation.

10. Conclusion

In this paper, we have provided a comprehensive dis-

cussion on scalable and distributed methods for consol-

idating, matching, and disambiguating entities present

in a large static Linked Data corpus. Throughout, we

have focussed on the scalability and practicalities of ap-

plying our methods over real, arbitrary Linked Data in

a domain agnostic and (almost entirely) automatic fash-

ion. We have shown how to use explicit owl:sameAs re-

lations in the data to perform consolidation, and subse-

quently expanded this approach, leveraging the declara-

tive formal semantics of the corpus to materialise addi-

tional owl:sameAs relations. We also presented a scal-

able approach to identify weighted entity concurrences:

52We had also presented this in earlier papers [22,23].

entities which share many inlinks, outlinks, and at-

tribute values—we note that those entities demonstrat-

ing the highest concurrence were not coreferent. Next,

we presented an approach using inconsistencies to dis-

ambiguate entities and subsequently repair equivalence

classes: we found that this approach currently derives

few diagnoses, where the granularity of inconsistencies

within Linked Data is not sufficient for accurately pin-

pointing all incorrect consolidation. Finally, we tem-

pered our contribution with critical discussion, particu-

larly focussing on scalability and efficiency concerns.

We believe that the area of research touched upon in

this paper—particularly as applied to large scale Linked

Data corpora—is of particular significance given the

rapid growth in popularity of Linked Data publishing.

As the scale and diversity of the Web of Data expands,

scalable and precise data integration technique will be-

come of vital importance, particularly for data ware-

housing applications—we see the work presented herein

as a significant step in the right direction.

References

[1] Riccardo Albertoni and Monica De Martino. Semantic

Similarity of Ontology Instances Tailored on the Application

Context. In Proc. of OTM 2006, Part I, volume 4275 of LNCS,

pages 1020–1038. Springer, 2006.

[2] Riccardo Albertoni and Monica De Martino. Asymmetric

and Context-Dependent Semantic Similarity among Ontology

Instances. Jour. on Data Semantics, 4900(10):1–30, 2008.

[3] Philip A. Bernstein, Sergey Melnik, and Peter Mork. Interactive

Schema Translation with Instance-Level Mappings. In Proc. of

VLDB 2005, pages 1283–1286. ACM Press, 2005.

[4] Piero A. Bonatti, Aidan Hogan, Axel Polleres, and Luigi

Sauro. Robust and Scalable Linked Data Reasoning

Incorporating Provenance and Trust Annotations. Available

at http://sw.deri.org/˜aidanh/docs/saor_ann_

jws_si.pdf. Under review. Reference to be corrected. Please

do not distribute—for review purposes only.

[5] Paolo Bouquet, Heiko Stoermer, Michele Mancioppi, and

Daniel Giacomuzzi. OkkaM: Towards a solution to the “identity

crisis” on the semantic web. In Proceedings of SWAP 2006,

the 3rd Italian Semantic Web Workshop, volume 201 of CEUR

Workshop Proceedings, December 2006.

[6] Silvana Castano, Alfio Ferrara, Stefano Montanelli, and Davide

Lorusso. Instance matching for ontology population. In

Salvatore Gaglio, Ignazio Infantino, and Domenico Saccà,

editors, SEBD, pages 121–132, 2008.

[7] Zhaoqi Chen, Dmitri V. Kalashnikov, and Sharad Mehrotra.

Exploiting relationships for object consolidation. In IQIS ’05:

Proceedings of the 2nd international workshop on Information

quality in information systems, pages 47–58, New York, NY,

USA, 2005. ACM Press.

[8] Gong Cheng and Yuzhong Qu. Searching Linked Objects with

Falcons: Approach, Implementation and Evaluation. Int. J.

Semantic Web Inf. Syst., 5(3):49–70, 2009.

32

[9] Martine De Cock and Etienne E. Kerre. On (un)suitable

fuzzy relations to model approximate equality. Fuzzy Sets and

Systems, 133(2):137–153, 2003.

[10] Philippe Cudré-Mauroux, Parisa Haghani, Michael Jost, Karl

Aberer, and Hermann de Meer. idMesh: Graph-Based

Disambiguation of Linked Data. In WWW, pages 591–600,

2009.

[11] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In OSDI, pages 137–150,

2004.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate

Record Detection: A Survey. IEEE Transactions on Knowledge

and Data Engineering, 19(1):1–16, 2007.

[13] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning

about record matching rules. PVLDB, 2(1):407–418, 2009.

[14] Javier D. Fernández, Claudio Gutierrez, and Miguel A.

Martı́nez-Prieto. Rdf compression: basic approaches. In WWW,

pages 1091–1092, 2010.

[15] Hugh Glaser, Afraz Jaffri, and Ian Millard. Managing Co-

reference on the Semantic Web. In Proc. of LDOW 2009, 2009.

[16] Hugh Glaser, Ian

Millard, and Afraz Jaffri. RKBExplorer.com: A knowledge

driven infrastructure for linked data providers. In ESWC Demo,

Lecture Notes in Computer Science, pages 797–801. Springer,

June 2008.

[17] Bernardo Cuenca Grau, Boris Motik, Zhe Wu, Achille Fokoue,

and Carsten Lutz (eds.). OWL 2 Web Ontology Language:

Profiles. W3C Working Draft, April 2008. http://www.

w3.org/TR/owl2-profiles/.

[18] Laura M. Haas, Martin Hentschel, Donald Kossmann, and

Renée J. Miller. Schema and data: A holistic approach to

mapping, resolution and fusion in information integration. In

Alberto H. F. Laender, Silvana Castano, Umeshwar Dayal,

Fabio Casati, and José Palazzo Moreira de Oliveira, editors,

ER, volume 5829 of Lecture Notes in Computer Science, pages

27–40. Springer, 2009.

[19] Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L.

McGuinness, and Henry S. Thompson. When owl:sameAs

Isn’t the Same: An Analysis of Identity in Linked Data. In

International Semantic Web Conference (1), pages 305–320,

2010.

[20] Harry Halpin, Ivan Herman, and Pat Hayes. When owl:sameAs

isn’t the Same: An Analysis of Identity Links on the Semantic

Web. In Linked Data on the Web WWW2010 Workshop

(LDOW2010), 2010.

[21] Patrick Hayes. RDF semantics. W3C Recommendation,

February 2004. http://www.w3.org/TR/rdf-mt/.

[22] Aidan Hogan, Andreas Harth, and Stefan Decker. Performing

Object Consolidation on the Semantic Web Data Graph. In

1st I3 Workshop: Identity, Identifiers, Identification Workshop,

2007.

[23] Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable

Authoritative OWL Reasoning for the Web. Int. J. Semantic

Web Inf. Syst., 5(2):49–90, 2009.

[24] Aidan Hogan, Andreas Harth, Jürgen Umbrich, Sheila Kinsella,

Axel Polleres, and Stefan Decker. Searching and Browsing

Linked Data with SWSE: the Semantic Web Search Engine.

Technical Report DERI-TR-2010-07-23, Digital Enterprise

Research Institute (DERI), 2010. http://www.deri.ie/

fileadmin/documents/DERI-TR-2010-07-23.pdf.

[25] Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Stefan Decker.

SAOR: Template Rule Optimisations for Distributed Reasoning

over 1 Billion Linked Data Triples. In International Semantic

Web Conference, 2010. (to appear).

[26] Aidan Hogan, Axel Polleres, Jürgen Umbrich, and Antoine

Zimmermann. Some entities are more equal than others:

statistical methods to consolidate Linked Data. In 4th

International Workshop on New Forms of Reasoning for the

Semantic Web: Scalable and Dynamic (NeFoRS2010), 2010.

[27] Anja Jentzsch, Jun Zhao, Oktie Hassanzadeh, Kei-Hoi Cheung,

Matthias Samwald, and Bo Andersson. Linking Open Drug

Data. In International Conference on Semantic Systems (I-

SEMANTICS?09), 2009.

[28] Atanas Kiryakov, Damyan Ognyanoff, Ruslan Velkov, Zdravko

Tashev, and Ivan Peikov. LDSR: a Reason-able View to the

Web of Linked Data. In Semantic Web Challenge (ISWC2009),

2009.

[29] Frank Klawonn. Should fuzzy equality and similarity satisfy

transitivity? comments on the paper by m. de cock and e. kerre.

Fuzzy Sets and Systems, 133(2):175–180, 2003.

[30] Martin Michalowski, Snehal Thakkar, and Craig A.

Knoblock. Exploiting secondary sources for automatic object

consolidation. In Proceeding of 2003 KDD Workshop on Data

Cleaning, Record Linkage, and Object Consolidation, 2003.

[31] B. Scott Michel, Konstantinos Nikoloudakis, Peter L. Reiher,

and Lixia Zhang. Url forwarding and compression in adaptive

web caching. In INFOCOM, pages 670–678, 2000.

[32] Fergal Monaghan and David O’Sullivan. Leveraging ontologies,

context and social networks to automate photo annotation. In

SAMT, pages 252–255, 2007.

[33] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P.

James. Automatic Linkage of Vital Records: Computers can

be used to extract ”follow-up” statistics of families from files

of routine records. Science, 130:954–959, October 1959.

[34] Andriy Nikolov, Victoria S. Uren, Enrico Motta, and Anne

N. De Roeck. Integration of semantically annotated data by

the knofuss architecture. In EKAW, pages 265–274, 2008.

[35] Jan Noessner, Mathias Niepert, Christian Meilicke, and Heiner

Stuckenschmidt. Leveraging terminological structure for object

reconciliation. In ESWC (2), pages 334–348, 2010.

[36] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak,

Holger Stenzhorn, and Giovanni Tummarello. Sindice.com: A

document-oriented lookup index for open linked data. Int. J.

Metadata Semant. Ontologies, 3(1):37–52, 2008.

[37] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes,

Annette ten Teije, and Frank van Harmelen. Marvin: Distributed

reasoning over large-scale Semantic Web data. J. Web Sem.,

7(4):305–316, 2009.

[38] Niko Popitsch and Bernhard Haslhofer. Dsnotify: handling

broken links in the web of data. In WWW, pages 761–770,

2010.

[39] Yves Raimond, Christopher Sutton, and Mark B. Sandler.

Interlinking music-related data on the web. IEEE MultiMedia,

16(2):52–63, 2009.

[40] Raymond Reiter. A theory of diagnosis from first principles.

Artif. Intell., 32(1):57–95, 1987.

[41] Manuel Salvadores, Gianluca Correndo, Bene Rodriguez-

Castro, Nicholas Gibbins, John Darlington, and Nigel R.

Shadbolt. Linksb2n: Automatic data integration for the semantic

web. In OTM Conferences (2), pages 1121–1138, 2009.

[42] F. Scharffe, Y. Liu, and C. Zhou. RDF-AI: an Architecture

for RDF Datasets Matching, Fusion and Interlink. In

IJCAI 2009 Workshop on Identity, Reference, and Knowledge

Representation (IR-KR).

33

[43] Lian Shi, Diego Berrueta, Sergio Fernández, Luis Polo, and

Silvino Fernández. Smushing RDF instances: are Alice and Bob

the same open source developer? In PICKME2008 Workshop.

[44] Sameer Singh, Michael L. Wick, and Andrew McCallum.

Distantly labeling data for large scale cross-document

coreference. CoRR, abs/1005.4298, 2010.

[45] Jennifer Sleeman and Tim Finin. Learning Co-reference

Relations for FOAF Instances. In Poster and Demo Session at

ISWC 2010.

[46] Mechthild Stoer and Frank Wagner. A simple min-cut

algorithm. J. ACM, 44(4):585–591, 1997.

[47] Michael Stonebraker. The Case for Shared Nothing. IEEE

Database Eng. Bull., 9(1):4–9, 1986.

[48] Heiner Stuckenschmidt. A Semantic Similarity Measure for

Ontology-Based Information. In FQAS ’09: Proceedings of

the 8th International Conference on Flexible Query Answering

Systems, pages 406–417, Berlin, Heidelberg, 2009. Springer-

Verlag.

[49] Herman J. ter Horst. Completeness, decidability and complexity

of entailment for RDF Schema and a semantic extension

involving the OWL vocabulary. Journal of Web Semantics,

3:79–115, 2005.

[50] Giovanni Tummarello, Richard Cyganiak, Michele Catasta,

Szymon Danielczyk, and Stefan Decker. Sig.ma: Live views

on the Web of Data. In Semantic Web Challenge (ISWC2009),

2009.

[51] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van

Harmelen, and Henri E. Bal. OWL Reasoning with WebPIE:

Calculating the Closure of 100 Billion Triples. In ESWC (1),

pages 213–227, 2010.

[52] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi

Kobilarov. Discovering and maintaining links on the web of

data. In International Semantic Web Conference, pages 650–

665, 2009.

[53] Denny Vrandečı́c, Markus Krötzsch, Sebastian Rudolph, and

Uta Lösch. Leveraging non-lexical knowledge for the linked

open data web. Review of April Fool’s day Transactions (RAFT),

5:18–27, 2010.

[54] Lotfi A. Zadeh, George J. Klir, and Bo Yuan. Fuzzy Sets, Fuzzy

Logic, Fuzzy Systems. World Scientific Press, 1996.

Appendix A. Prefixes

In Table A.1, we provide the prefixes used throughout

the paper.

Appendix B. OWL 2 RL/RDF rules

Prefix URI

“T-Box prefixes”

atomowl: http://bblfish.net/work/atom-owl/2006-06-06/#

b2r: http://bio2rdf.org/bio2rdf:

b2rr: http://bio2rdf.org/bio2rdf_resource:

dbo: http://dbpedia.org/ontology/

dbp: http://dbpedia.org/property/

ecs: http://rdf.ecs.soton.ac.uk/ontology/ecs#

eurostat: http://ontologycentral.com/2009/01/eurostat/ns#

fb: http://rdf.freebase.com/ns/

foaf: http://xmlns.com/foaf/0.1/

geonames: http://www.geonames.org/ontology#

kwa: http://knowledgeweb.../heterogeneity/alignment#

lldentrezgene: http://linkedlifedata.com/resource/entrezgene/

lldpubmed: http://linkedlifedata.com/resource/pubmed/

loc: http://sw.deri.org/2006/07/location/loc#

mo: http://purl.org/ontology/mo/

mvcb: http://webns.net/mvcb/

opiumfield: http://rdf.opiumfield.com/lastfm/spec#

owl: http://www.w3.org/2002/07/owl#

quaffing: http://purl.org/net/schemas/quaffing/

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

skipinions: http://skipforward.net/.../skipinions/

skos: http://www.w3.org/2004/02/skos/core#

“A-Box prefixes”

dbpedia: http://dbpedia.org/resource/

eswc2006p: http://www.eswc2006.org/people/#

kingdoms: http://lod.geospecies.org/kingdoms/

macs: http://stitch.cs.vu.nl/alignments/macs/

semweborg: http://data.semanticweb.org/organization/

vperson: http://virtuoso.openlinksw.com/dataspace/person/

wikier: http://www.wikier.org/foaf.rdf#

Table A.1

Used prefixes

OWL2RL
Antecedent

Consequent
assertional

eq-refa ?s ?p ?o .

?s owl:sameAs ?s .

?p owl:sameAs ?p .

?o owl:sameAs ?o .

eq-sym ?x owl:sameAs ?y . ?y owl:sameAs ?x .

eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .

eq-rep-s ?s owl:sameAs ?s0 . ?s ?p ?o . ?s0 ?p ?o .

eq-rep-pb ?p owl:sameAs ?p0 . ?s ?p ?o . ?s ?p0 ?o .

eq-rep-o c ?o owl:sameAs ?o0 . ?s ?p ?o . ?s ?p ?o0 .

Table B.1

Rules that support the positive semantics of owl:sameAs—we

use double-strikethrough to denote rules that we do not support

by design

a We typically omit this rule which adds unnecessary bulk to the
materialised inferences, will not lead to any novel consolidation,
and could be more easily supported by backward-chaining.
b We do not allow owl:sameAs inferencing to affect terms in
the predicate position of a triple.
c We only support this rule for objects of non-rdf:type triples.

34

OWL2RL
Antecedent

Consequent
terminological assertional

prp-fp ?p a owl:FunctionalProperty . ?x ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .

prp-ifp ?p a owl:InverseFunctionalProperty . ?x1 ?p ?y . ?x2 ?p ?y . ?x1 owl:sameAs ?x2 .

prp-key ?c owl:hasKey (?p1 , ..., ?pn)
?x ?p1 ?z1 ; ... ; ?pn ?zn , a ?c .

?x owl:sameAs ?y .
?y ?p1 ?z1 ; ... ; ?pn ?zn , a ?c .

cls-maxc2
?x owl:maxCardinality 1 . ?u a ?x .

?y1 owl:sameAs ?y2 .
?x owl:onProperty ?p . ?u ?p ?y1 , ?y2 .

cls-maxqc3

?x owl:maxQualifiedCardinality 1 . ?u a ?x .

?y1 owl:sameAs ?y2?x owl:onProperty ?p . ?u ?p ?y1 , ?y2 .

?x owl:onClass ?c . ?y1 a ?c . ?y2 a ?c .

cls-maxqc4

?x owl:maxQualifiedCardinality 1 .
?u a ?x .

?y1 owl:sameAs ?y2?x owl:onProperty ?p .
?u ?p ?y1 , ?y2 .

?x owl:onClass owl:Thing .

Table B.2

OWL 2 RL/RDF rules that directly produce owl:sameAs relations—we denote authoritative variables with bold, we italicise

the labels of rules requiring new OWL 2 constructs, and we denote rules not currently supportable by our implementation with

strikethrough

OWL2RL
Antecedent

terminological assertional

eq-diff1 -
?x owl:sameAs ?y .

?x owl:differentFrom ?y .

eq-diff2 -

?x a owl:AllDifferent ;

owl:members (?z1 ...?zn) .

?zi owl:sameAs ?zj . (i 6=j)

eq-diff3 -

?x a owl:AllDifferent ;

owl:distinctMembers (?z1 ...?zn) .

?zi owl:sameAs ?zj . (i 6=j)

prp-irp ?p a owl:IrreflexiveProperty . ?x ?p ?x .

prp-asyp ?p a owl:AsymmetricProperty ?x ?p ?y . ?y ?p ?x .

prp-pdw ?p1 owl:propertyDisjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y .

prp-adp
?x a owl:AllDisjointProperties .

?u ?pi ?y ; ?pj ?y . (i 6=j)
?x owl:members (?p1 , ..., ?pn) .

prp-npa1 -

?x owl:sourceIndividual ?i1 .

?x owl:assertionProperty ?p .

?x owl:targetIndividual ?i2 .

?i1 ?p ?i2 .

prp-npa2 -

?x owl:sourceIndividual ?i .

?x owl:assertionProperty ?p .

?x owl:targetValue ?lt .

?i ?p ?lt .

cls-nothing2 - ?x a owl:Nothing .

cls-com ?c1 owl:complementOf ?c2 . ?x a ?c1 , ?c2 .

cls-maxc1
?x owl:maxCardinality 0 .

?u a ?x ; ?p ?y .
?x owl:onProperty ?p .

cls-maxqc1

?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y . ?y a ?c .?x owl:onProperty ?p .

?x owl:onClass ?c .

cls-maxqc2

?x owl:maxQualifiedCardinality 0 .

?u a ?x ; ?p ?y .?x owl:onProperty ?p .

?x owl:onClass owl:Thing .

cax-dw ?c1 owl:disjointWith ?c2 . ?x a ?c1 , ?c2 .

cax-adc
?x a owl:AllDisjointClasses .

?z a ?ci , ?cj . (i6=j)
?x owl:members (?c1 , ..., ?cn) .

dt-not-type*a - ?s ?p ?lt .

Table B.4

OWL 2 RL/RDF rules with false consequent—we denote

authoritative variables with bold, italicise the labels of rules

requiring new OWL 2 constructs, denote rules not currently

supportable by our implementation with strikethrough, and denote

rules not supported by design with double-strikethrough

a Where ?lt is a ill-typed literal: we do not include this rule as
it cannot be used to detect incorrect consolidation.

35

OWL2RL
Antecedent

Consequent
terminological assertional

prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .

prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .

prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .

prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .

prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .

prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .

prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .

prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .

cls-int2 ?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1 ...?cn .

cls-uni ?c owl:unionOf (?c1 ...?ci ...?cn) . ?x a ?ci ?x a ?c .

cls-svf2
?x owl:someValuesFrom owl:Thing ;

?u ?p ?v . ?u a ?x .
owl:onProperty ?p .

cls-hv1
?x owl:hasValue ?y ;

?u a ?x . ?u ?p ?y .
owl:onProperty ?p .

cls-hv2
?x owl:hasValue ?y ;

?u ?p ?y . ?u a ?x .
owl:onProperty ?p .

cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .

cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .

cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

Table B.3

OWL 2 RL/RDF rules containing precisely one assertional pattern

in the body, with authoritative variables in bold (see [25])

36

