

Ranking Semantic Web Graphs

Author: Aidan Hogan

Supervisor: Dr. Peter Corcoran

B.E. Electronic and Computer Engineering

Final Yr. Thesis

March 05

Ranking Semantic Web Graphs ii

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Declaration of Originality

I hereby declare that this thesis is my original work except where stated

Signature:____________________________________ Date:__________________

Ranking Semantic Web Graphs iii

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Abstract

With an ever-increasing volume of data on the web and more people availing themselves of

Internet services, the ability to retrieve data relevant to the user is becoming more and more

endangered. There are many researchers working in the area of trying to improve information

retrieval within the domain of the Net. Two such areas, coming from different backgrounds

and different directions are Ranking Algorithms for giving priority in information retrieval

services to more content rich pages, and also the Semantic Web, a framework within which

more structured data can be provided on the Web.

Ranking algorithms on the Web are of great utility to users who require specific information

from the Web. Most people requiring such information usually avail themselves of a search

engine, the most prevalent being Google. Google uses a ranking algorithm called PageRank to

give priority to more content rich and useful pages in searches, a system which has made the

company a household name.

The Semantic Web is a venture in which much research is being pursued. The Semantic Web

hopes to bring order to a chaotic Web, by providing a structure to data which is interpretable

by computers who can then take some of the workload from users in services such as

information retrieval. Endorsed by the W3C and a vision of the future of the Web by Tim

Berners-Lee, work in the Semantic Web is being pursued by many companies. Indeed,

Semantic Web technologies are in employment today in a wide range of areas.

The purpose of this project is to try and bring the advantages of structured data and ranking

algorithms together to successfully provide an advanced search and browsing tool for

different domains of structured data. More specifically, three pre-existing datasets are

acquired, indexed, stored and analysed and then a search engine application is applied to each,

which provides the user with a ranked results set.

Ranking Semantic Web Graphs iv

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Acknowledgements

I would like to acknowledge the role of my supervisor, Dr. Peter Corcoran in this project and

for the advice and support he offered for the duration of the project.

I would also like to thank those working in DERI, Ireland for allowing use of their server

arrays and resources for the work described herein. I would especially like to mention the

support of Andreas Harth and John Breslin, who offered me advice and support and also

technical help with using the servers.

Ranking Semantic Web Graphs v

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Table of Contents
Section Page

CHAPTER 1: INTRODUCTION... 1
1.1-RANKING ALGORITHMS ... 1
1.2-THE SEMANTIC WEB.. 2
1.3-DATASETS USED .. 6

1.3.1-Citeseer .. 6
1.3.2-GreatestJournal FOAF.. 7
1.3.3-US Patents ... 7

CHAPTER 2: THE RANKING COMPONENT .. 8
2.1-PAGERANK... 8

2.1.1-Rationale behind PageRank .. 8
2.1.2-Process of Calculation .. 9
2.1.3-Local Ranking.. 14
2.1.4-Clustering .. 16

2.2-NTRIPLES GRAPH RANKING PACKAGE.. 18
2.2.1-Memory Optimisation.. 20
2.2.2-Computational Optimisations ... 21

2.2.2.1-Quadratic Extrapolation..22
2.2.2.2-Separation of minimum rank value ..23

2.2.3-Weighting Feature ... 24
2.2.4-Towards a search engine component.. 25

2.2.4.1-Providing a HTTP interface..25
2.2.4.2-Dynamic Ranking Capabilities...26

CHAPTER 3: DATA INDEXING TOOLS ... 28
3.1-YARS... 28
3.2-LUCENE .. 31

CHAPTER 4: PREPARATION AND INDEXING OF THE DATASETS ... 33
4.1-CITESEER COMPUTER AND INFORMATION SCIENCE PUBLICATIONS DATASET... 33

4.1.1-Dataset Acquisition ... 33
4.1.2-Preparation for Indexing... 33
4.1.3-Indexing the Data .. 35

4.2-GREATESTJOURNAL FOAF FILES .. 38
4.2.1-Data Acquisition.. 38
4.2.2-Preparation and Indexing ... 39

4.3-US PATENT METADATA... 40
4.3.1-Dataset Acquisition ... 40
4.3.2-Preparation and Indexing ... 40

CHAPTER 5: USER INTERFACE.. 42
5.1-ORIGINAL NODEBROWSER ... 42
5.2-NEW FEATURES ADDED ... 43

5.2.1-Lucid HTML Serialisation... 43
5.2.2- Interface with Ranking: Buffered Results, Navigation and Sessions .. 45
5.2.3- In Tab Browsing ... 46
5.2.4- Advanced Semantic Searching ... 47

CHAPTER 6: SEARCH ENGINE SYSTEM.. 48
6.1-SYSTEM ARCHITECTURE .. 48
6.2-RUNTIME OPERATION .. 49
6.3-FINAL IMPLEMENTATION AND PERFORMANCE .. 50

Ranking Semantic Web Graphs vi

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

CONCLUSION ... 51
BIBLIOGRAPHY AND REFERENCES... 53
APPENDICES... 54

A: CITESEER OAI TO RDF-NTRIPLES CONVERSION.. 54
A.1: XSLT USED... 54
A.2:CONVERSION PATH OF A SINGLE CITESEER ENTRY... 56

A.2.1:OAI (XML) ...56
A.2.2:RDF-XML...57
A.2.3:RDF-NTRIPLES...57

B: PATENT REDBOOK XML TO RDF-NTRIPLES CONVERSION ... 59
B.1: XSLT USED... 59
B.2:CONVERSION PATH OF A SINGLE PATENT ENTRY... 63

B.2.1:REDBOOK(XML)..63
B.2.2:RDF-XML ...66
B.2.3:RDF-NTRIPLES ...67

C: EXAMPLE CONFIG.XML - CITESEER .. 69
D: SCREENSHOTS... 71

D.1:SCREENSHOT OF INITIAL SCREEN.. 71
D.2:SCREENSHOT OF TABBED BROWSING... 71
D.3:SCREENSHOT OF ADVANCED BROWSING FORM .. 72
D.4:SCREENSHOT OF TREE BROWSING .. 72

Ranking Semantic Web Graphs vii

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Ranking Semantic Web Graphs 1

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Chapter 1: Introduction

This thesis describes the work achieved with the aspiration of creating a search engine tool

that can be applied to any Semantic Web dataset which has an inherent “simple” graph

characteristic, that is to say a graph consisting of one type of node/resource and one type of

edge/link. By indexing and storing the dataset through Semantic Web languages and

applying graph based ranking techniques to said, it is possible to create a search engine tool

which fully exploits the data retrieval advantages intrinsic to both Semantic Web

technologies and graph based ranking algorithms. Presented herein are many areas of

research and work in both fields that are innovative and practical and culminate in an

application with advanced ranked search and retrieval capabilities for three separate datasets.

This Chapter begins by introducing the two main research areas involved in this project and

continues by introducing the three datasets which comprised the use-cases of the search

engine system. Chapters 2 through 5 then deal with the background, motive, design and

creation of the various components required to implement said system, and Chapter 6

presents the end product, three separate search engines for each dataset computing returning

ranked results page.

1.1-Ranking Algorithms
Ranking algorithms are employed by search and retrieval systems to order the resources

returned by the query. Two main categories of ranking algorithm exist, keyword ranking and

links based ranking.

Keyword ranking algorithms, such as TF-IDF, are solely based on the keywords that a user

enters as a search parameter to the system. They generally aim to try and place numerical

values of relevance of each document or resource indexed by the system to the term(s) or

phrase(s) in the users query. Usually, this is based on the rarity of usage of a particular word,

the frequency of its occurrence in a document, entire phrase matches and/or the positioning

of the words in the document (words in title boost relevancy). Those documents with higher

scores float to the top of the results page issued to the user.

Ranking Semantic Web Graphs 2

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Links based or graph based ranking algorithms can be applied when there exists connections

within the resources being indexed. This can occur when resources link, cite, reference or in

some other way mention another equivalent resource. Such connections lead to what will be

referred to as explicit graphs for the duration of this thesis. An example of this is the World

Wide Web where web-pages link each other by means of Hyperlinks. Indeed PageRank, the

most prevalent links based ranking algorithm, is used on this premise by Google.

In certain cases, connections can also be inferred by resources sharing a common property or

value. This inference can be useful where graph based algorithms would ideally be applied

to a database of resources that have no explicit connections. For instance, in a database of

authors of research papers, authors could be linked by co-authorship of a paper. That is to

say such authors are linked by sharing a common property: having authored the same paper.

Such graphs existing within a dataset shall be referred to as implicit graphs.

Why, you may ask, are links in the dataset between resources so important? How can they

help with finding relevancy to a keyword search entered by the user? The simple answer is

that they can’t. What they do allow however is a form of peer review, where if one resource

links to another, it can be interpreted in the generic sense as a vote of confidence.

To be more specific about this idea of peer review, lets examine the example of the Web

with web-pages interlinking. Spamming etc. aside, the motives behind Page A linking Page

B is that the creator of Page A believes that there is content in Page B that is relevant and

useful to someone accessing the page. Therefore, the link can be seen as “a vote of

confidence” in Page B by Page A. How exactly these votes are tallied is the subject of

Section 2.1.

1.2-The Semantic Web
The Semantic Web is an attempt to bring order to the ever sprawling Web by, among other

things, providing a framework for the online publication of structured data. The

contemporary Internet is a vast expanse of HTML web-page. HTML is a mark-up language

which means that various components of the document are tagged – enclosed by specific

HTML elements. This allows web-browsers to find what part of the document refers to the

Ranking Semantic Web Graphs 3

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

header, background, body, links etc. This is essentially as far as the structure extends, with

probably vast amounts of data left unstructured in prose throughout the body of the page.

XML, or eXtensible Markup Language is again a markup language but is not restricted to

tags that only a web-browser needs to display a document. XML documents are intended to

describe (meta)data as opposed to HTML which uses tags to display data in a desirable way.

XML essentially allows data exchange esp. over the Web, and its power lies in the “X”,

eXtensible. This means that it can be used for describing almost any generic data. For

instance in Fig. 1.1, an example XML snippet is used by a (very small) video store to

describe their products. It describes three products and some of their pertinent properties. It

is quite easily interpreted by a human reader, however using technologies developed by

various working groups, technologies such as XPath, XQuery and XSLT, applications can be

build to interpret, edit, search, create etc. such documents.

Two important parts of XML are XML Schema and namespaces. XML schema allow a

greater definition of what each tag represents, what properties are applicable to it (if any)

and restricts XML documents to that structure. So for instance, an XML Schema could be

created to restrict the rentable attribute in Fig. 1.1 to exclusively Boolean values, etc.

XML namespaces allow elements to be mapped to a unique identifier, a URI. This can be

useful to resolve any ambiguity that may exist as to what a tag refers to. It also helps the

interoperability and inter-interpretability of XML files, i.e. where files from different

locations using the same namespace (scheme of URIs) and tag identifiers etc. can be

interpreted by the same applications. This stems from the fact that data can be linked

through the Web by using a URI. The same types of property or value are mapped to the

same URI.

However, the Semantic Web goes another step, with its main data exchange format called

RDF, or Resource Description Framework [1]. RDF is not a single language, but is instead a

framework for data publication. It is again intended for when data will need to be processed

by software agents and has vast scope for interoperability. This interoperability comes from

its strict syntax for representing data, and the advantages of this interoperability are

Ranking Semantic Web Graphs 4

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

exploited by the work presented in this thesis.

 <?xml version="1.0"?>
 <products>

<films>

 <film rentable = “true” format = “dvd”>

 <title>Speed 2</title>

 <copies>3</copies>

 <price>3.00</price>

 </film>

 <film rentable = “false” format = “video”>

 <title>Spiceworld</title>

 <copies>1</copies>

 <price>29.99</price>

 </film>

</films>

 <games>

 <game rentable = “true” platform = “xbox”>

 <title>Mario the Hedgehog</title>

 <price>2.00</price>

 <copies>2</copies>

 </game>

 </games>

 </products>

Figure 1.1 An example XML snippet describing the product of a video rental store

RDF centres around the idea of triples, which are a simple construct consisting of subject,

predicate and object. It is enforcing such constructs in the structure of data and also selective

use of compulsory namespacing, discussed later, which allows RDF its advantage over

XML.

Triple elements are at the core of all data exchange. If one thinks of them in the context of

the English language, the following slightly simplified English phrase:
Toyota is owned by Tim

has subject Toyota, predicate owned by and object Tim. The subject indicates what

resource or entity is being described, the predicate offers the type of property of that

resource which is being described and the object gives the value of that property. Objects

themselves can become subjects in data, i.e.

Ranking Semantic Web Graphs 5

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Tim owns Toyota

Tim authored Hamlet

Tim is gender female

In both lines Tim is now the subject, predicates are owns, authored and gender and objects

are Toyota, Hamlet and female. Sometimes, RDF also allows context to be specified.

Context is essentially the source of the data i.e. who authored the data or where it was found.

This is the basis of semantics in the Semantic Web.

RDF also makes use of URIs and namespaces. All resources should be given a specific

property called type. Ideally, all resources should also be given an ID, a URI. If not they

should be provided a blank node identifier. Also, all properties must be given their own

URI. So now we have

 <http://www.ppl.com/Tim> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.animals.com/Person> .

 <http://www.ppl.com/Tim> <http://www.generic.com/name> “Tim” .

 <http://www.ppl.com/Tim> <http://www.humanproperties.com/is_gender> <http://www.genders.com/female> .

 <http://www.ppl.com/Tim> <http://www.verbs.com/authored> “Hamlet” .

 <http://www.ppl.com/Tim> <http://www.ownership.com/owns> <http://www.move.com/Toyota> .

 <http://www.move.com/Toyota> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.move.com/car> .

 <http://www.move.com/Toyota> <http://www.generic.com/name> “Toyota” .

Figure 1.2 An example snippet of RDF-NTriples describing a person and his car

This is an example of RDF-NTriples, one of the existing RDF languages which constitutes

an important aspect of this project. As can be seen there are three entities to a line, each one

part of a triple. The first entity is always the subject and so it follows for predicate and

object respectively. All subjects must be unique identifiers, either URIs or blank nodes,

properties must be URIs and finally objects can be either URIs, blank-nodes or literals. URIs

are enclosed by <> characters, blank nodes are generally an integer prefixed by _:boid e.g.

_:boid5, and finally literals can be any form of text as long as certain characters are

properly escaped and are enclosed by inverted commas.

All the data about Tim and his automotive tendencies are still included but now in a

computer interpretable form. If Tim uses the same URIs as other people use for his

predicates and types (but not his own ID, it refers to a unique entity: himself) and publishes

the data on the web then applications which find it, such as mediators or search engines, will

Ranking Semantic Web Graphs 6

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

be able to index away his data with all the other data using the same URI naming scheme.

This is one essential aspect of the Semantic Web, which has its roots in XML. With the

growth of various URI naming schemes for different types of data, many human and

software agents are beginning the publishing, on the Web, of RDF data.

Again RDF is not a single language. Some of the languages within the framework include

RDF-XML, an XML based language and RDF-N3, (of which RDF-NTriples is a subset)

which allows single facts of data to be encoded into lines. RDF-XML also plays an

important part in this project as a stepping stone from other data-types.

1.3-Datasets Used
In order to bring about this synergy between Semantic Web technologies and ranking

algorithms, some datasets were needed to experiment on. These datasets essentially needed

to be data about uniform resources using some form of uniform description language. The

datasets also needed to feature inherent graph characteristics. That is to say the resources

described need to have some property (predicate) whose value (object) was an equivalent

resource (a resource with the same value for the property “type”).

Three datasets were deemed suitable, CiteSeer, FOAF data from a site called

GreatestJournal and also US patent data. These datasets were prepared, analysed, indexed

and eventually a search and retrieval tool built on top of them.

1.3.1-Citeseer

CiteSeer is an online search engine for published material in the areas of computer science

and information retrieval. It offers search and retrieval of metadata about research papers

and other published works in these areas. CiteSeer offers the download of a compressed

archive of such metadata from their site1. This data is in the form OAI which is an XML-like

language and features the metadata of nearly 600,000 research papers. There are two graphs

inherent in CiteSeer, one derived from research papers citing other papers and the other

derived from authors having co-authored with one another. The former graph is an example

of an explicit graph, the latter an implicit graph.

1 http://citeseer.ist.psu.edu/oai.html

Ranking Semantic Web Graphs 7

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

1.3.2-GreatestJournal FOAF

FOAF, or Friend of a Friend data is a type of RDF data using URIs from a specified

namespace, the FOAF namespace2. Such data is usually expressed in RDF-XML and is

primarily concerned with publishing data regarding people.

The site GreatestJournal3 allows users to create their own “journal”, which is essentially a

community accessible web-page. It allows the editing of other users journals if not restricted

and encourages growth of communities. The site, at time of writing, boasts about 1.3 million

users. GreatestJournal dynamically creates a FOAF file for each new user it registers. The

FOAF file contains data such as username, name, interests and most importantly for our

purposes, a foaf:knows property, the object of which is an element referring to another

user of GreatestJournal which the user has specified as a “friend”. This property creates the

graph which is of interest to us.

This data is not available as a single download, but instead each FOAF file is provided at an

address accessible over the Web. This data can be retrieved by crawling as a user’s FOAF

file feature links to the FOAF files of users it has indicated as friends. However crawling

will not return the full dataset, as some introverted users may not be linked to by another

user.

1.3.3-US Patents

The USPTO, US Patents office4 indexes and offers search and retrieval tools for various

metadata about patents. USPTO has a data store of patent data for millions of patents,

ranging between four different formats (that is to say the format used has changed four

times, and some patent data is available in one, some only available in another, etc.). One of

these formats is XML based and has been in use since April 20055. The data is available

through an FTP server6 as compressed archives of a weeks patent data. Patents often cite

other patents as relevant, creating a graph of patents.

2 http://xmlns.com/foaf/0.1/
3 http://www.greatestjournal.com/
4 http://www.uspto.gov/
5 http://www.uspto.gov/web/menu/patdata.html
6 ftp://ftp.uspto.gov/pub/patdata/

Ranking Semantic Web Graphs 8

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Chapter 2: The Ranking Component

2.1-PageRank
PageRank is a links based ranking algorithm employed by Google to rank and return results

to a user from its indexed web-pages, as mentioned in Section 1.1 [2]. Such a system for our

search and retrieval aspirations would be pivotal, allowing a return of ranked result

resources from our three datasets. The resources (papers, authors, users and patents) become

nodes in a graph linked by different edges (cites, co-authors, knows and references). These

graphs, which can be described in RDF and can be extracted from their source datasets (as

will be described in Chapter 4), can also be analysed by a technique based on PageRank.

2.1.1-Rationale behind PageRank

PageRank uses links between nodes as a means of determining the prevalence or importance

of a node. A node that has many links to it is obviously quite relevant to many other nodes.

This usually means that the node is perhaps content rich, has great utility or is somehow

relevant to its peer nodes. It uses such analyses to place a numeric value called a PageRank

score, on each node’s prominence.

Of course with all this talk of nodes, graphs, RDF, predicates and later talk of eigenvectors,

connectivity matrices and quadratic extrapolation methods, it occludes appreciation of the

human aspect of all links based ranking algorithms. All the resources (nodes) and all the

links (edges) have a human source. Some person authored the paper that’s being ranked and

cited the papers that were relevant, someone was involved with the referencing of one patent

by another, someone was involved in the decision to co-author with another, and someone

decided that another’s journal was of interest to them. All things considered, algorithms like

PageRank, based in the world of computers, logic and math, exploit these somewhat

subjective human decisions to provide scores for resources that humans find relevant. It is

essentially the correlation of a peer review or a system of voting, an idea that helps

rationalise this talk of computers deciding relevancy of results to human users.

The basic premise of PageRank is that nodes begin with equal importance, an equal

PageRank score. The importance of a node is then calculated solely on its inlinks and their

Ranking Semantic Web Graphs 9

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

source. Intuitively, the outlinks of a node cannot affect its importance (what papers a paper

cites does not make much difference, as such, to its importance; the paper would be

important however if many other important papers cite it). Nodes are also banned from

voting for themselves. PageRank is not simply a case of counting inlinks however, again the

source of the inlinks are of vital importance in calculation. An inlink from a relatively

important node can be just as valuable as many inlinks from relatively unimportant nodes.

To clarify with an example, if a research paper is deemed as an extremely important paper,

the papers it cites should be regarded as also important. On the other hand, the citations of

less important papers demand less respect. Taking this into account the voting power of a

node is basically its PageRank score. More important nodes have more say.

Also of importance is the number of outlinks the inlinking node makes. For instance, if node

A links to 100 other nodes, node A’s vote will be evenly divided over all the nodes. So if

you have been linked by node A, even if node A is of high importance, you will receive only

100th of node A’s vote.

2.1.2-Process of Calculation

PageRank is an iterative computation which begins with all nodes being equal. In each

successive iteration, the score of node A is determined as a summation of the PageRank

score in the previous iteration of all the nodes that link to node A divided by their number of

outlinks.

There is one complication, which is a damping factor, usually signified by d. It has a

numeric value usually agreed upon as 0.85. A node’s voting power is in fact only 0.85 of its

PageRank score. The other 0.15 is split evenly amongst all other nodes. There are now two

types of links in the graph, strong and weak. Strong links are the links derived from the

dataset. Weak links are artificially created by the damping factor and link all nodes to all

other nodes (and itself). This is an important aspect in the calculations which are described

herein.

Taking an example, the code in Fig. 2.1 is a fictitious snippet of an RDF-NTriple graph

description derived from the CiteSeer dataset. The method of derivation is described later in

Section 3.1. This graph can be interpreted as paper with identifier oai:CiteSeerPSU:1 cites

Ranking Semantic Web Graphs 10

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

paper with identifier oai:CiteSeerPSU:2, etc. From now on oai:CiteSeerPSU:1 shall be referred

to as node 1 or paper 1, and so on. This graph can be visualised as illustrated in Fig. 2.2,

which incorporates the node index of Table 2.1.

<oai:CiteSeerPSU:1> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:2> .
<oai:CiteSeerPSU:1> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:3> .
<oai:CiteSeerPSU:2> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:1> .
<oai:CiteSeerPSU:2> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:4> .
<oai:CiteSeerPSU:3> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:4> .

Figure 2.1 Source NTriples Graph

The first task involves parsing the NTriples data to get all the pertinent graph details. This is

described in Section 2.2. In doing so, the aim is to create both a node index, which maps an

integer value onto the node’s identifier (Table 2.1), and a connectivity matrix (Initial Matrix

in Table 2.2) which defines which nodes link which. For the duration of the determination of

the final PageRank scores, the node is known by a number and not a string identifier.

1 2

4 3

cites

cites cites

cites

cites

Figure 2.2 Node Index

Index Node Identifier
1 oai:CiteseerPSU:1
2 oai:CiteseerPSU:2
3 oai:CiteseerPSU:3
4 oai:CiteseerPSU:4

Table 2.1. Node Index

1 2 3 4 1 2 3 4 1 2 3 4
1 0 1 1 0 1 0 0.5 0.5 0 1 0.0375 0.4625 0.4625 0.0375
2 1 0 0 1 2 0.5 0 0 0.5 2 0.4625 0.0375 0.0375 0.4625
3 0 0 0 1 3 0 0 0 1 3 0.0375 0.0375 0.0375 0.8875
4 0 0 0 0 4 0 0 0 0 4 0.25 0.25 0.25 0.25

 Initial Matrix Normalised Matrix Matrix with Damping Factor
 Table 2.2. Connectivity Matrices

Configuring the connectivity matrix is the next step. From parsing the source data, the initial

connectivity matrix is derived. Seen in Table 2.2, the initial matrix is simply a (n x n) matrix

Ranking Semantic Web Graphs 11

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

of 1’s and 0’s where n is the number of nodes being ranked, 1 indicates a link and 0

indicates an absence thereof. Index (i,j) of the matrix indicates that node i links node j (node

i and node j referring to the nodes of the same value in the node index, Table 2.1).

Each row must then be normalized to a sum of 1. The value in index (i,j) now refers to the

proportion of node i’s vote that will be given to node j disregarding the damping factor.

Each link in the row is treated equally.

Finally for configuring the connectivity matrix, the damping factor d must be factored in.

For every row, each non-zero entry is multiplied by the damping factor (0.85) [2]. Every

entry in the row is then evenly distributed the weak link (0.15). That is to say, each entry in

the row, zero or non-zero, has 0.15/n added. This results in the third matrix displayed in

Table 2.2. The value of index (i,j) is the final version of the proportion of node i’s vote that

will be given to node j. Of interest is the fact that all entries are non-zero, and that each row

adds to 1.

One may note that row 4 does not follow the above rules. Node 4 is in fact a node with no

outlinks. Referring to Fig. 2.2 should confirm this. In this case, node 4’s vote is evenly

distributed. In fact, node 4 has no impact on the ranking and some parties promote removing

such nodes from the proceedings, however I found it more convenient for my own purposes

to leave such nodes in and split their vote evenly.

After this step follow the iterative calculations. The PageRank score is an n length vector,

one score for each node. Initially the score for each node is initialized to 1/n. The value for

index i of the vector is of course, the score of node i. The following equation applies;

 PRk+1 (i) = ∑
∈ iINj

(PRk(j) * CM(j,i)) (2.1)

where i is a node, INi is the set of inlinks to i, PR is the PageRank score vector, k is the

number of iterations and CM is the connectivity matrix with the damping factor included.

Following these calculations is equivalent to calculating the first eigenvector of the third

connectivity matrix in Table 2.2, using the Power Method. This is no coincidence as a

Ranking Semantic Web Graphs 12

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

mathematical interpretation of the PageRank score vector, is indeed the said eigenvector,

and said connectivity matrix can be viewed as a Markov chain which is made ergodic by the

damping factor, a Markov chain representing next state probabilities for a random walk from

node to node through the links in the graph. That is to say that the element in index (i,j) in

the term of a random walk is in fact the probability of landing yourself at node j given that

you are currently situated at node i. The damping factor can be interpreted as the probability

that a random surfer will reset the walk i.e. stop following the “strong” links and teleport to

a random node. With this in mind the first eigenvector of the Markov chain equates to the

long term probabilities of a random walker being at the given node [2].

 Iteration 1 with initial PR values Iteration 2 with Iteration 1 results

Figure 2.3 First two iterations

Fig. 2.3 illustrates the propagation of PageRank scores through strong links over the first

two iterations. Included within the oval, below the node index, is the value of PageRank

from the previous iteration (PRk-i). Before iteration 1, all PageRank scores are evenly set to

0.25 each. The links now indicate the numerical value propagated through that link, each

node i splitting its voting power (which has a value of d * PRk-i(i) in iteration k) over all its

outlinks.

The PageRank of the node in any iteration is the sum of all the incoming propagated score,

plus a minimum value arisen by the damping factor d and nodes with no inlinks splitting

their vote over all nodes. This has the value of 0.090625 in iteration 1 and was left out of the

figure for clarity.

The PageRank values will settle at a fixpoint of Node 1 = 0.2, Node 2 = 0.2, Node 3 = 0.2

Ranking Semantic Web Graphs 13

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

and Node 4 = 0.4, and so node 4 is deemed the most important, which is intuitive. Also

intuitive in this deliberately simple outcome is the results. The value of node 2 must equal

node 3 as they have an equal input, one link from node 1. Also, node 1 must be equal as it

receives half the input of node 2, which is the same as the input to node 2 and three. A brief

examination of Fig. 2.3 can confirm that nodes 1, 2 and 3 have and always will have the

same value input, and that the ratios of the inputs will not change.

It follows that node 4 must have a fixpoint value of twice the other nodes as it has an input

of all of node 3, and an input the same as node 1. One could be forgiven initially for thinking

that the iterations would never converge to a fixpoint but one must remember that even

though node 4 would seem to continue its growth, draining the score from the other nodes

through node 3, it continuously spreads its score evenly over all the other nodes thanks to

the exception, mentioned earlier, for nodes with no outlinks. Once this strikes a balance

(aided by the damping factor) the calculations have reached their fixpoint.

The advantage of using the damping factor is shown empirically in Fig. 2.4, a replica of Fig.

2.3 without use of the damping factor. As can be seen after one iteration, the PR values are

much further from the fixpoint than in Fig. 2.3. Remember again, the PR values are boosted

by the PR value of node 4 being evenly distributed, which is not shown for brevity. This can

be explained mathematically by the damping factor being responsible for setting an upper

limit of the second eigenvector by a factor of (1-d). The increased distance between the first

and subsequent eigenvectors allows fast convergence.

The damping factor also helps when subgraphs exist. Such subgraphs are linked from the

main graph, but do not link back to it. An example is illustrated in Fig. 2.5 where nodes 4

and 5 form a subgraph. The damping factor forces the redistribution of PR score through the

“weak” links it creates. Without it, all the score would drain into it from nodes 2 and 3.

Ranking Semantic Web Graphs 14

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

 Iteration 1 with initial PR values Iteration 2 with Iteration 1 results
Figure 2.4 First two iterations without use of damping factor

Figure 2.5 Leeching subgraph

Finally the PageRank scores are mapped back to the string identifier for each node, ready to

be interpreted by a front-end application.

2.1.3-Local Ranking

Local ranking, or topic-sensitive ranking allows more fine tuned results for a user searching

for resources on a particular topic [3]. Local ranking is essentially the same process we have

discussed (which may be referred to as global ranking) except that it is carried out on a

subset of the graph.

Lets propose that a user wishes to search for papers relating to the “Semantic Web” and that

a keyword query to that effect is entered. A system of global ranking will get the identifiers

of all the papers with keyword hits “Semantic Web” and check them off against a pre-

computed global ranking score table. The effect can be the possible return of a result set

with papers at the top that are deemed very important independently of the topic but only in

Ranking Semantic Web Graphs 15

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

fleeting mention the “Semantic Web”. For example, a paper could be a very important paper

on the topic of databases, be cited by lots of other important database papers and give a

cursory mention of the phrase “Semantic Web”. Such a paper could not to be said to be

entirely relevant to the topic the user requires results on.

This can be quite a common occurrence where results returned are indeed important papers,

and do feature the keywords required but are not in fact relevant to the area the user requires

searching. Local ranking solves this issue.

Instead of a pre-computed lookup table of global ranking results, local ranking allows

dynamic ranking of topical subgraphs. Returning to our example, if the user enters a query

for papers in the area of the “Semantic Web”, all the papers with a keyword hit are isolated,

and only links between those papers are used in ranking, creating an example of a topical

subgraph. The said important paper on databases will be in the subgraph, but will not be

benefited by its links from database papers. Instead, only those papers heavily linked by

other semantic web papers, and so relevant to the topic, will be highly scored.

This is illustrated in Fig. 2.6 which shows a subgraph of nodes 1-10 referring to research

papers which have caused a keyword query match and which have been isolated from the

main graph. Nodes 5 and 6 have also caused a keyword match. Although these nodes shown

in blue are heavily cited in the main graph, these external citations (red) are not counted in

local ranking and so are completely irrelevant. All that matters are links between the 10

nodes, links in black. Thus resources referring to nodes such as 4, 8 and 9 will be returned at

the top of the results page, with resources referring to nodes 5 and 6 featuring near the

bottom.

Ranking Semantic Web Graphs 16

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Figure 2.6 Isolation of a subgraph punishing nodes 5 and 6

Node : node8 rank : 0.1482085321911664
Node : node4 rank : 0.14147615827245175
Node : node3 rank : 0.12712997218772998
Node : node9 rank : 0.12133470236191726
Node : node1 rank : 0.1112559080227273
Node : node2 rank : 0.09911451197995516
Node : node10 rank : 0.08523494510313026
Node : node7 rank : 0.07290457520894209
Node : node5 rank : 0.0606389092522675
Node : node6 rank : 0.03279450447144371

Figure 2.7 Results of subgraph punishing nodes 5 and 6

2.1.4-Clustering

An interesting experiment carried out for this project included utilising the ranking score

propagation characteristics to cluster papers into topics which they would not be associated

with by keyword alone.

Lets propose again that there was an important paper, but this time was in the area of the

semantic web, but in the metadata associated with the paper in the CiteSeer archive, said

keywords did not feature (the converse of the problem solved by local ranking). A user

enters a query for papers in the area, and the aforementioned paper does not appear.

Ranking Semantic Web Graphs 17

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Clustering aims to help this paper get the placement on the results page it deserves.

Clustering involves again taking the topical subgraph, but including those nodes a certain

low number of hops away. These hops can also be taken in the inlink or outlink direction.

Fig.2.7 helps illustrate this. It depicts a scenario where nodes 1-9 are returned as keyword

matches. No content with just these nine, clustering attempts to add more surrounding nodes

into the subgraph. In Fig. 2.7, the black links are used in ranking but do not affect

subclustering. Node 10 is an example of an important paper with regards the topic of the

query, but not featuring the keywords of the query. Nodes 11 – 15 help illustrate the effects

of the number of hops taken, and the direction of clustering. All red links could be used by

inlink clustering, which will add to the subgraph the node (also in red) from hence the red

link originated. All blue links are used by outlink clustering to add the node (again in blue)

that they point to. Node 10 is green as it could be added by either inlink or outlink

clustering. Black links are not used for clustering. Nodes 11 and 12 would be added by 2

hop inlink clustering. Node 13 would require 3 hop inlink clustering. Node 15 would require

1 hop outlink clustering, whilst finally node 14 would require 2 hop outlink clustering. The

link shown between node 11 and 12 would not be used in clustering, as both nodes would be

added at the same time by inlink clustering. Once a node is added, all of its links to other

nodes in the subgraph are available for ranking.

Figure 2.7 Extension of subgraph into other related nodes

Ranking Semantic Web Graphs 18

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

As can be seen from the nature of the graph in Fig 2.7, one hop clustering in either or both

directions will add node 10, a node of high relevance to the topic but not a keyword query

hit. The purpose of further hops would be to prevent the restriction of such a node by not

having all of its inlinks included. Nodes 1-9 would have all of their remaining inlinks from

the external graph added in the clustering step only that added node 10.

It should be noted however that Fig 2.7 is only an example to illustrate the procedure and

purpose of the technique. In real graph terms, if one were to go more than 2 hops away, off-

topic results would most certainly be returned quite high on the list. If many more hops are

made, the entire graph would be returned in the form of a global rank.

2.2-NTriples Graph Ranking Package
To apply the techniques explained in Section 2.1 to the applications we desire, a Java

package was needed to implement PageRank type algorithms. The processes involved in

said application are illustrated in Fig 2.8.

The first step in the application would be to create an NTriples parser to allow the input of

an NTriples graph file to the application. This was a trivial exercise as the nature of NTriples

dictates that resources must be enclosed by < > characters. Utilising the

java.util.StringTokenizer class with these characters for each line read in from file I/O,

isolating the identifiers of the resources and those they link to from the file becomes a

straightforward exercise. Indeed, the interoperability of RDF data begins to shine. The same

parsing methods work for any NTriples file describing a graph.

Unfortunately however, in developing the procedures that follow said parsing, some major

obstacles arose, most stemming from the sheer physical size of the graphs that such a

package would be attempting to rank. For instance, the CiteSeer graph of papers features

about 570,000 nodes and well over a million links. The NTriples file which describes this

graph is about 127MB. Early attempts for the purposes of this project to rank such graphs

attempted to closely follow the above described techniques.

Ranking Semantic Web Graphs 19

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

N3
Graph

Description

Ordered
N3

Results

N3
Data

Parsed

Connectivity
Matrix and
Node Index

Built

Iterative
First

Eigenvector
Calculations

N3
Output
Created

Node Identifiers
And Connections

Connectivity
Matrix

Ranking
ScoresNode Index

N3 Graph
Description

N3 Format
Ranking
Scores

Ranking
Package Core

Figure 2.8 Process of ranking NTriples graphs

As has been mentioned in Section 2.1.2, the PageRank score vector is the first eigenvector of

the connectivity matrix with the damping factor included. Early attempts to calculate said

eigenvector were aiming to use an available Java matrix utility package called JAMA7,

however this package failed at finding the first eigenvector of matrices in the order of only

1000 x 1000. Clearly the package was not a viable solution.

Looking to optimise the process of ranking, a brand new package was created from scratch.

This package had to be optimised to be memory efficient and computationally efficient.

Calculating the eigenvectors of a matrix can be computationally expensive and representing

7 http://math.nist.gov/javanumerics/jama/

Ranking Semantic Web Graphs 20

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

connectivity matrices can be overbearing on memory resources. For instance a traditional

square matrix of even a primitive data type in Java for a graph of 500,000 nodes would

require 2.5 x 1010 or 250 trillion entries. To create this, a heap space of somewhere in the

order of 8 terabytes of heap-space would have to be available to the application to load the

matrix. Before computational concerns could be addressed, the memory issues had to be

addressed lest the algorithm couldn’t load any data for computation!

2.2.1-Memory Optimisation

A very simple work around was implemented for loading in the connectivity matrix. Instead

of a square matrix, two flat matrices are used. One flat matrix holds inlinks, and its inverse

flat matrix holds outlinks. In row i of the inlink flat matrix is a list of all the indexes of all

the nodes which i is linked by and conversely in row i of the outlink flat matrix is a list of all

the nodes which i links. Table 2.3 illustrates the migration from a traditional square

connectivity matrix to two flat matrices.

1 2 3 4

1 0 1 1 0 1 2 3 1 2
2 1 0 0 1 2 1 4 2 1
3 0 0 0 1 3 4 3 1
4 0 0 0 0 4 4 2 3

Traditional Matrix Outlinks Flat Matrix Inlinks Flat Matrix
Table 2.3. Equivalent square matrix and dual flat matrix representations

Although the same data is repeated in the two flat matrices, both are necessary to ease

computational requirements. In the square matrix, lookups of the inlinks of a node require

looking down a column. Performing the same operation without the second inlinks matrix,

the algorithm would have to check every entry in the outlinks flat matrix for the index of the

node. The same is true for outlinks. Together however, both matrices offer even faster

lookups for links in either direction for a particular node than the connectivity matrix can.

The real utility of the dual flat matrix connectivity format is the savings in memory. Thanks

to the extremely sparse nature of the square matrix, vast improvements are made. Each flat

matrix has the same number of entries as there are links within the graph, so for a dataset

like the CiteSeer dataset, with over 300,000 nodes and about 1.3 million links the total

number of entries in both matrices is 2.6 million. This is 100 million times smaller than the

Ranking Semantic Web Graphs 21

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

square matrix.

The total memory requirements for applying such analysis to a graph of n nodes and m links

is a java.util.Vector of n node identifiers for lookups of the identifier of a node by its

index, java.util.Hashtable of n buckets for lookups of the index of a node by its

identifier, two n length array of doubles for the current and previous ranking score vector

and two flat matrices with m entries each, represented as an array of Vectors. An additional

requirement which is justified later in Section 2.2.2.1 is for an n x 3 array for storing the

answers of old iterations used by a convergence acceleration method called Quadratic

Extrapolation[4]. This method also required the allocation of 6 n length arrays for internal

computations. Whilst this was a major step forward from 8 terabytes, heap space of

approximately 0.5GB was still required. Thankfully, there were servers available for use by

the algorithm with RAM of 2 GB.

2.2.2-Computational Optimisations

With a new memory efficient means of loading into memory the graph’s structure,

computational concerns were paramount. The flat matrix’ outlinks cannot be normalised, nor

can a damping factor be included as was illustrated in Table 2.2. To do so would require a

square matrix, which has already been deemed unfeasible. To analyse the data now

represented in this memory efficient manner required a whole new rethink on the process of

ranking.

Data readily available to the algorithm included each nodes inlinks and outlinks, and also the

total number of outlinks of each node. In each iteration, the damping factor and universal

even links from nodes with no outlinks would have to be manually factored into the

equation. At first, in each iteration, for each node i, a complete search of all of rows of the

outlinks flat matrix was completed.

If the outlinks in row j did not include i, the new ranking score for i in iteration k would be

added with the following value;

 (1-d)/n * Rk-1(j) (2.2)

where n is the total number of nodes in the graph and Rk-1(j) is the ranking score of node j

Ranking Semantic Web Graphs 22

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

from the previous iteration.

If the outlinks in row j did include i, the ranking score for i would be added with

 (1-d)/n * Rk-1(j) + d/oj * Rk-1(j) (2.3)

where the same notation applies again and oj is the number of outlinks node j has.

The third case was where row j was empty and node j had no outlinks. In this case the value

added was

 Rk-1(j) / n (2.4)

allowing even distribution of node j’s vote.

The convergence of the ranking vector was measured by a value called the L1 residual [2].

This is a very simple mathematical property which takes the summation of the absolute

differences, of all the elements in the ranking vector, between the freshly completed iteration

and the previous iteration. This is normalised so that the first L1 residual value is equal to

one. When this value reaches a certain tolerance, usually 0.01, the calculations end.

Whilst all the above is a sound means of computing the ranking score vector, it proved to be

very computationally intensive. The analysis of the CiteSeer data took about 60 hours of

solid computation to derive a result. This did not bode well for the dynamic ranking

aspirations (runtime local ranking and clustering) of this project. In order to attempt to

accelerate convergence, a method called Quadratic Extrapolation was employed.

2.2.2.1-Quadratic Extrapolation

Quadratic Extrapolation is a method by which estimations are made of the non-principal

eigenvectors (second and third) and are subtracted from the current iteration estimation. This

can lead to a saving of computation time in the order of 30% [4].

The method takes the most recently calculated ranking vector, and the three previously

computed ones (answers from iterations k down to k-3). A 2 x n matrix Y is then filled with

the difference between the ranking vectors from iterations k-3 and k-2 and the differences

between answer vectors from iterations k-3 and k-1. A QR decomposition of Y using the

Gram-Schmidt method is then employed. The resulting Q matrix is then used to compute a 2

Ranking Semantic Web Graphs 23

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

x 1 vector γ by pre-multiplying a vector with the differences between ranking vectors from

iterations k and k-2 by –Q transposed. The two values in γ are combined with a third value γ3

which equals 1 to give three values for β as shown in Equations 2.5, 2.6 and 2.7. Equation

2.8 shows the final derivation of the eigenvector estimation, where R is the ranking score

vector (first eigenvector). The β values act as ratios of which previous iteration estimates are

of the actual principal eigenvector.

 β0 = γ3 + γ2 + γ1 (2.5)

 β1 = γ3 + γ2 (2.6)

 β2 = γ3 (2.7)

 Rk+1 = Rk-2 *β0 + Rk-1 *β1 + Rk *β2 (2.8)

In order to utilise this technique, a Java class within the ranking package was created to

maintain the multidimensional arrays to house the matrices mentioned above with methods

to implement the necessary computations. These methods were used between every three

iterations to accelerate convergence.

2.2.2.2-Separation of minimum rank value

Whilst Quadratic Extrapolation aided somewhat with computation time for very large

graphs, said computation was still taking multiple days to finish. However, remembering the

idea of the minimum rank value that a node gains from universal links, links due to the

damping factor or due to even distribution from empty nodes, a lot of the repetitive

operations within each iteration can be curtailed.

In each iteration, every node is given a base score derived from the universal links. These

links are uniform to every node. Thus, if in every iteration the numerical values pertinent to

calculating the minimum value for the proceeding iteration are stored, the process can

become vastly more streamlined. This, and a conversion from calculations based on the

outlinks flat matrix to its twin, the inlinks flat matrix allows vast orders of improvement in

terms of ranking computation time. The new process for each iteration k is as follows. For

every node i, the minimum value mink derived from iteration k-1 is its base ranking score

value. On top of this, for every inlinking node j that node i has (if any) the following value is

is added

 d/oj * Rk-1(j) (2.9)

where d is the damping factor, oj is the number of outlinks j has (derived easily from the

Ranking Semantic Web Graphs 24

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

outlinks flat matrix) and Rk-1(j) is the ranking score computed for j in iteration k-1 (the

previous iteration). If i has no inlinks, its ranking score simply equals mink.

To allow the calculation of the minimum score for the proceeding iteration, after the value of

the ranking score for every node i is calculated, if it has no outlinks (and so it’s vote must be

evenly distributed over all other nodes) its value is added to deadk, initialised as zero at the

start of every iteration. If node i does indeed have outlinks, its score is instead added to livek

also initialised to zero at the start of each iteration. After iteration k is completed, the value

of mink+1 can be calculated using the following formula:

 mink+1 = (deadk / n) +(livek * (d/n)) (2.10)

Finally, vast improvements in computation time were being observed. The CiteSeer

NTriples graph file could be parsed, the various data entities in the ranking package filled

and rankings output within twenty seconds. The actual ranking of the in-memory graph took

approx. 2 seconds to reach an L1 residual value of less than 0.1, in about 15 iterations.

2.2.3-Weighting Feature

So far all the techniques described have been for analysing graphs where links are unique

and one node cannot link another more than once. Intuitively in some domains however, a

counting system for the number of times one node links another could be useful. It is

perhaps not useful with regards the graph of research papers citing one another duplicate

citations from one paper to another is not encouraged. Similarly it is not applicable to the

FOAF or Patent data graphs. It may however be applicable to the graph of authors co-

authoring with one another, derived from the CiteSeer dataset.

If author A co-authors 10 papers with author B, and co-authors 4 papers with author C, it

could be said that author A is putting more of a vote of confidence in author B, with a

weighting of 10/4 as compared to author C. Thus it is possible to derive weightings for the

graph, and such weightings should allow better results than normal according to this

consideration.

To implement the weighting feature in the ranking package, a parallel count flat matrix to

the flat outlinks matrix was programmed. For each index in each row that corresponded to a

link within the outlinks matrix, a corresponding entry was created in the count matrix to

Ranking Semantic Web Graphs 25

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

reflect the number of that particular link that was encountered. These count elements were

then used as ratios in which to divide the nodes “vote”. Unfortunately however, due to issues

with the CiteSeer dataset, this weighting procedure was never employed.

2.2.4-Towards a search engine component

At this point we now have a ranking package featuring nine classes. These classes include a

parent class FlatMatrix, which is extended by the classes ConnectivityMatrix and

CountMatrix. Also within the package are two classes to provide lookups of node

identifiers to node indexes, namely NamesVector and NamesHashTable. There are then

three utility classes, one is a simple Pair which represents a node identifier/ rank score pair

and has a comparable method to facilitate sorting with a Java Collection object, the second

is the QuadraticExtrapolation class and the final is RankingConsole which features the

main method which to this point was solely concerned with command line arguments and

file I/O.

Whilst almost all the necessary backend components are in place, an interface through which

the ranking component can be accessed by a Web agent would be necessary for it to be

integrated into a search engine architecture. Also, the dynamic ranking techniques, namely

local ranking and clustering would need to be implemented. And so it was.

2.2.4.1-Providing a HTTP interface

A Java servlet was created to provide the HTTP interface through which specific ranking

requests could be passed to the ranking package, more specifically to an instantiation of a

RankingConsole. The servlet allows requests to be issued to it via HTTP POST or GET. To

try and make the architecture of the search engine more efficient, a keyword index was also

instantiated by the servlet. This is the topic of Section 3.2.

The class RankingConsole was reconfigured so as to allow instantiation of it by a Java

servlet. Upon initialisation, the RankingConsole class reads in an input file which

comprises of the entire graph data in NTriples format for the given dataset. It parses this data

as normal and loads the relevant data entities in the class. This all happens when the

servlet’s init method is called, and once initialised, the servlet maintains a reference to the

RankingConsole instance as a class variable. The initialisation takes about twenty seconds

Ranking Semantic Web Graphs 26

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

and is called the first time the servlet is issued a request after being deployed.

The servlet can be passed a YARS URI (more in Section 3.1) when a semantic query is

requested by the user. The servlet connects to YARS via a HTTP GET request, parses out

the returned subject identifiers and passes them onto the RankingConsole to be ordered

according to the global ranking scores determined upon initialisation.

The servlet can also be passed a keyword query (more in Section 3.2) as requested by the

user. The servlet then uses the keyword index it references to return a list of subject uris that

have a keyword hit. The same process can be then applied again passing the list of subjects

to be ordered by the RankingConsole.

Once the RankingConsole has returned a list of ordered results, the servlet begins

outputting them in order via its OutputStream. It usually takes 1 or 2 seconds for the servlet

to return results from such a response for results sets of less than 10,000. Above that

response time will not usually exceed 5 seconds.

The RankingConsole can also receive requests from the servlet for dynamic ranking

services i.e. local ranking and clustering.

2.2.4.2-Dynamic Ranking Capabilities

The servlet can request local ranking or clustering services from the RankingConsole

instantiation it references. If the user specifies a desire for such a service, this request is

passed on to the RankingConsole object to be processed.

In order to allow such processing, the RankingConsole class has been equipped with an

overridden init method which allows the creation of a new RankingConsole class that

encapsulates a subgraph of the factory object. This is done via a specific method in

RankingConsole which is passed an argument of a list of resource identifiers returned from

either the user’s keyword or semantic query (more in Chapter 3) which has been processed

by the servlet. This list of resources is the subgraph which needs to be returned.

In order to create the subgraph, a blank RankingConsole object is initialised using the

Ranking Semantic Web Graphs 27

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

overridden init method. The RankingConsole class then uses its NamesHashTable to do

lookups of all the original indexes from the main graph of all resources passed to the

method. These are all indexed and the string identifiers of the resources are cached in the

new RankingConsole object for the subgraph.

If clustering is required, the class will take the user requested parameters from the servlet

and perform clustering based on those parameters which are direction of clustering and

number of hops. Depending on which direction of clustering (or both) is required, the

method will fill the new subgraph instance of the class with all of the resources linked by

those nodes already in the subgraph, as indicated by the inlinks and outlinks flat matrices

from the main graph. This is done iteratively for the number of hops required.

Once the string identifiers for the desired nodes of the subgraph have been loaded into the

new RankingConsole instance, the twin flat matrices (and optional count matrix) must be

built. Essentially, using the equivalent main graph matrix, any links that exist between nodes

indexed in the subgraph are added to a given matrix. The ranks are then computed and

returned to the servlet to be output.

Finally we have an application which will allow both global and dynamic ranking of

resources indexed, and which is suitable for use as a search engine component.

Ranking Semantic Web Graphs 28

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Chapter 3: Data Indexing Tools

In order to prepare and index the three datasets pertinent to the work portrayed in this thesis,

various Semantic Web technologies and languages were applied. By describing the datasets

in RDF, an indexing tool called YARS8 could be used on the data [5].

Unfortunately, though YARS allows the specification of very expressive semantic queries,

the version used for this project did not feature keyword indexing. A separate tool called

Lucene9 was used to index the keywords found in the datasets.

3.1-YARS
YARS or Yet Another RDF Store, is a Semantic Web application which allows the storing

and indexing of data described in RDF-NTriples. YARS features a REST-ful HTTP

interface which allows data to be issued for storage via HTTP PUT, and can be queried via

HTTP GET.

YARS is implemented in Java and is packaged within a WAR file intended for deployment

in an Apache Tomcat environment.

YARS uses optimised index stores to allow fast retrieval times. It centres around six

different indexes which are accessed depending on the characteristic of the query. Each store

allows optimised lookups of subject, predicate, object and/or context given a query.

Queries passed to YARS are in the N3QL format, an N3 based query language. N3QL

allows advanced “semantic” queries to be issued. These queries are very flexible and can be

quite useful if, for instance, you intend looking for resources (subjects) with specific

property (predicate) values (objects). In fact you can issue queries based on knowledge of

many different combinations of these three components. You can also determine the data

returned, by specifying its desired source (context). Once you have specified the properties

of the data you require, you can specify exactly what you want in the results set. YARS will

then promptly begin returning results.

8 http://sw.deri.org/2004/06/yars/
9 http://lucene.apache.org/java/

Ranking Semantic Web Graphs 29

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

If you remember the N-Triple snippet in Fig.1.2, if we were to load this into a YARS

instance, and then enter the N3QL query of Fig.3.1 into a HTML GET request for YARS,

the result set, Fig. 3.1, would be all the triples which have subject URI
<http://www.ppl.com/Tim>.

@prefix : <http://sw.deri.org/2004/06/yars#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix ql: <http://www.w3.org/2004/12/ql#> .

<> ql:select {
 ?s ?p ?o .
}; ql:where {
 ?s rdfs:type <http://www.animals.com/Person> .
 ?s <http://www.verbs.com/authored> “Hamlet” .
 ?s ?p ?o.
} .

Figure 3.1 Example N3QL query

The query can be broken down into three constructs. The first section of the query allows the

definition of local-prefixes for the namespaces used in later sections. Local prefixes are

merely creations of convenience, as they allow a user specifying a query with the same

namespace used multiple times to use the prefix and the property instead of the full URI. For

instance, in the query illustrated in Fig. 3.1, the local prefix rdfs: is defined as the URI

http://www.w3.org/2000/01/rdf-schema# and so instead of having to write out the full

URIs of properties which use the namespace, such as type one can use rdfs:type to

replace <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>.

The second component of the query, defined by the ql:select construct allows the

indication of which variables defined in the ql:where section or other resources should be

returned from the query. Selected in Fig. 3.1 are the variables ?s ?p ?o . which refer to

subject, predicate and object respectively as we will see in the ql:where portion of the

query.

The ql:where is the final, and probably most important element of the query. It allows the

definition of the properties of any of the variables which appear in the ql:select portion of

the query. Any variable in ql:select must have its properties defined in ql:where. In Fig.

Ranking Semantic Web Graphs 30

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

3.1, the variables ?s ?p and ?o are defined by three lines in the ql:where element. The

first line restricts the ?s variable to all subjects whom have a property rdfs:type equal to

the URI <http://www.animals.com/Person>. The second line further restricts the ?s

variable to a subject which also has also a property defined by the URI

<http://www.verbs.com/authored> equal to the literal “Hamlet”. Now that the ?s

variable has been suitably bounded, the third line defines ?p and ?o as all of the properties

and values thereof for all subjects matching the specifications defined for the ?s variable.

Given an input dataset of Fig 1.2 into YARS, Fig 3.2 indicates the data that is returned by

YARS given query Fig 3.1.

 <http://www.ppl.com/Tim> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://www.animals.com/Person> .

 <http://www.ppl.com/Tim> <http://www.generic.com/name> “Tim” .

 <http://www.ppl.com/Tim> <http://www.humanproperties.com/is_gender> <http://www.genders.com/female> .

 <http://www.ppl.com/Tim> <http://www.verbs.com/authored> “Hamlet” .

 <http://www.ppl.com/Tim> <http://www.ownership.com/owns> <http://www.move.com/Toyota> .

Fig. 3.2 Results from N3QL query in Fig 3.1

Such advanced queries were used to isolate the NTriples graph data from their respective

datasets by issuing a query to return all triples with the property which equates to the links in

the graph structure (e.g. the triple ?s foaf:knows ?o . entered into the select and where

components of the query and the local prefix foaf defined). These files would be eventually

used as the input file to initialise the global instances of RankingConsole classes for the

different datasets.

This idea of semantic querying is also offered to the user as an alterative to a keyword

search. Where the user knows the exact properties of the resources (s)he wants returned in

the results set, these properties can be specified by a dynamically created search tool, created

specifically for each dataset .

The same basic principles are applied to the indexing of very the large datasets as are to the

examples provided. The response time of YARS for queries is quite remarkable; however

the creation of the indexes it uses internally can be quite slow. With this in mind, as YARS

is loaded it only creates one index called SPOC, which indexes triples in their natural order.

Ranking Semantic Web Graphs 31

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

This will only return results where the subject is the provided entity. To fully exploit the

advanced query capabilities of YARS, one must build the other indexes one by one through

a HTTP GET request. Each one can take days to fully build for large numbers of triples in

the dataset. If one were then to go back and add more data to YARS and wanted that data to

be fully indexed, all indexes besides the SPOC index would have to be rebuilt. These time

constraints, and others explained later, pressed heavily on the desired timeline of this

project. However, to reiterate, once the data is loaded into YARS and fully indexed, its

performance is generally quite remarkable, even for indexing large datasets, conforming to

the old adage, good things come to those who wait.

3.2-Lucene
Apache Lucene is an open source project implementing a keyword index, which is a type of

inverted index. An inverted index is one which reverses the natural process of indexing.

Therefore instead of a resource indexing keywords in the form of for example, a title, a

description, a list of interests etc. these keywords can be used to index the resources they

appear in.

This is the basic premise behind keyword queries. A user can give a word or phrase which

they wish to appear somewhere in the resource they require and the keyword index will

return hits for that query. However, Lucene also offers quite advanced keyword searches,

not just limited to single keywords, exact phrase match or Boolean type properties. Such

advanced keyword searches include wildcard entries, fuzzy searches, proximity searches

etc10.

Lucene is implemented in a Java package which is ideal for integration into the project. It

offers classes to aid in the creation of an on-disk index, and classes to aid in the querying of

such indices. The creation of the index is only required once and can be pre-computed. The

querying is computed at run-time when a user issues a request. The obvious course of action

to take was to build the Lucene index simultaneously with the YARS datastores.

To build a practical keyword index, only the objects of triples with certain properties were

10 http://lucene.apache.org/java/docs/queryparsersyntax.html

Ranking Semantic Web Graphs 32

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

indexed. Such properties were selected for each dataset based on the amount of text that

would appear in that object, and whether or not a user might wish to search via keywords

from that property. The objects of all such triples were of course literals, or string values. No

property which would have a URI or blank node as object were selected. These keywords

were then directly indexed against the subject identifier in the triple. Different properties

were not differentiated, and all keywords were all conglomerated into one index. In

hindsight, it may have proved purposeful to provide different fields for each property type

the keywords were sourced from. This would allow specific field search by the user.

Once such an index was created for a datastore, the classes used to query it were embedded

in the ranking component. The reasoning behind this is discussed in Chapter 6.

Ranking Semantic Web Graphs 33

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Chapter 4: Preparation and Indexing of the Datasets

Three datasets were chosen as use-case examples for the tool which this project aspires to

create. All three datasets are very different in many aspects, they all require different

methods of acquisition, they are all described in different metadata formats and they

describe very different resources. One factor that link all three are their inherent “simple”

graph characteristics. This Chapter proceeds to describe the acquisition, preparation and

indexing of each of the three datasets

4.1-CiteSeer Computer and Information Science Publications Dataset
As already described in Section 1.3.1, CiteSeer is an archive of computer and information

science metadata. This metadata is of the format OAI and is available as a single compressed

archive.

4.1.1-Dataset Acquisition

The acquisition of this dataset was perhaps the most straightforward of all three. The entire

dataset is available in one compressed archive with about 570 files indexing 1,000

publications each. Data acquisition basically involved downloading the 378 MB file and

uncompressing it on a Linux server into a directory. All the files were then directly

accessible by a tool created to convert and index the data.

4.1.2-Preparation for Indexing

YARS indexes RDF-NTriples, and so this was the destination metadata format for the files.

As we will see however, the various RDF languages are easily inter-convertible. The

original files are described in OAI which is quite similar to XML. Therefore if we first

convert from OAI to XML, then XML to RDF-XML and finally RDF-XML to RDF-

Ntriples, we will have the data in the necessary data format.

The conversion from OAI to XML was exceedingly simple. The essential difference

between both is the dearth in OAI of a root element, which is a mandatory component of an

XML document. To counteract this, after each file had been read into a buffer, a start tag and

an end tag were appended to the buffer. The major stepping stone in the data conversion

path lay directly ahead: converting from plain XML to RDF-XML.

Ranking Semantic Web Graphs 34

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Although the suffix of RDF-XML is XML, they are two wholly different breeds of metadata

format. The first step in the conversion process was to create an RDF specification to which

the XML documents could be converted. The RDF specification would have to encapsulate

all the relevant data from the XML format in the specific way that RDF requires and that

makes RDF interoperable.

The main difference between RDF-XML and plain XML is that plain XML need not define

URIs for its elements, nor need it actually make any division between entities and properties.

Referring to the example XML document in Fig 1.1, there does not exist any property

between the entities <products> and <games>. There is no computer interpretable relation

between the two physical entities. Such an absence of structure stops computers from

abstracting the semantics of the data.

In an effort to remain true to interoperability, existing namespaces were used as much as

possible as mappings from the XML data. One slight advantage of this dataset for such a

conversion was the widespread use of elements from the Dublin Core namespace11

(traditionally given the local prefix dc), which are not only relevant to plain XML

applications but are also valid RDF. These elements were preserved.

Another existing namespace used, but not already present in the data, was the FOAF

namespace used for describing people. This was used mainly to map metadata about authors

where possible.

Despite this attempt to stick to existing namespaces, a new specification was necessary to

map certain elements. This specification was created and given the namespace

http://sw.deri.org/2005/07/CiteSeer/. The local prefix citeseer will be adopted to

represent this URI from herein.

The finished specification for mapping to from the XML metadata featured two classes of

resources, authors denoted by the foaf:person element from the FOAF namespace and

papers denoted by the a new element, citeseer:paper. These resources have various

11 http://dublincore.org/

Ranking Semantic Web Graphs 35

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

applicable properties from existing namespaces and the new namespace. The main one of

concern is applicable to resources of type citeseer:paper. It is the property

citeseer:cites which allows one resource of type citeseer:paper to cite another

resource of type citeseer:paper. This creates the graph which will be used to rank the

papers.

Now that we have an idea of what elements from the XML documents we want mapped, and

the structure of the RDF-XML document which is being mapped to, an XSLT document is

used to carry out the actual mappings. XSLT is a transforming stylesheet which takes as

input an XML document and can access data within that XML document using a technology

called XPath. The XSLT can then fill this data into a new XML document or any other type

of document. XSLT is itself an XML document that must be compiled. Java classes within

the package javax.xml.parsers allow this process. Once this was implemented, the home

stretch of the data conversion path lay ahead.

Conversion from one RDF language to another could be a daunting prospect. RDF-XML

and RDF-NTriples aren’t even remotely syntactically alike. Thankfully, yet another external

open source Java package is available called Jena12, an RDF API. It provides classes to

provide conversions from one RDF language to another. Fig. 4.1 illustrates the entire

process of conversion from OAI to RDF-NTriples (also see Appendix A).

4.1.3-Indexing the Data

Now that the data is in N-Triples, it can be sent to a YARS via HTTP PUT. A new YARS

instance was created and deployed in Tomcat. The entire dataset took numerous days to be

converted and loaded. The auxiliary indices were also built. This would allow for semantic

queries in the final application using the YARS instance as a backend.

Simultaneously to the indexing of the data, a Lucene index was maintained. The values of

the Dublin Core elements dc:title, dc:description and dc:subject were chosen as

properties which would generally have a value full of pertinent keywords.

12 http://jena.sourceforge.net/

Ranking Semantic Web Graphs 36

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Add <root>
element

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns="http://sw.deri.org/2005/07/CiteSeer/">
<Paper rdf:about="oai:CiteSeerPSU:99901">
<identifier>oai:CiteSeerPSU:99901</identifier>
<datestamp>1996-06-13</datestamp>
<setSpec>CiteSeerPSUset</setSpec>
…

Apply XSLT

Use JENA API

<oai:CiteSeerPSU:99901> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://sw.deri.org/2005/07/CiteSeer/Paper> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/identifier> “oai:CiteSeerPSU:99901" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/datestamp> "1996-06-13" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/setSpec> "CiteSeerPSUset" .

…………..

<root>
<record>
<header>
<identifier>oai:CiteSeerPSU:99901</identifier>
<datestamp>1996-06-13</datestamp>
<setSpec>CiteSeerPSUset</setSpec>
</header>
<metadata>
……. </root>

<record>
<header>
<identifier>oai:CiteSeerPSU:99901</identifier>
<datestamp>1996-06-13</datestamp>
<setSpec>CiteSeerPSUset</setSpec>
</header>
<metadata>
…….

RDF-XML

RDF-NTriples

Plain XML

OAI

Figure 4.1 Path of Conversion from OAI to RDF-NTriples

Ranking Semantic Web Graphs 37

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

4.1.3-Postprocessing and Issues with Dataset

Upon converting and analysing the data, some problems with the original dataset were

revealed. In the original OAI format, a property oai_citeseer:relation type="Is

Referenced By" was featured. This element was converted to citeseer:referencedBy

the inverse property of citeseer:references. Unfortunately, this property was

flagrantly inaccurate, for example, trying to purport that papers from 5 years ago were cited

by papers from 20 years ago etc. In most cases, if one were to check a paper that another

paper was supposedly referenced by, one would not find the presence of such a reference.

The YARS version I was using did not feature delete capabilities and so the offending

elements had to be left in (restarting the whole YARS indexing process would be too time

consuming). However a new set of inverse properties were derived from swapping the

subject and object of the citeseer:references triples, using a new element

citeseer:referenced_by. These were sent to YARS.

Also the properties oai_citeseer:relation type="References" which were converted

to the very significant properties citeseer:references were largely incomplete for many

papers. Those that did exist however were reasonably reliable and so the work on ranking

the links was continued.

Another issue in the dataset was garbled values for literals. In many instances, literals had

values of nonsensical strings. The author metadata was particularly disappointing. Papers in

the dataset are provided with unique identifiers such as oai:CiteSeerPSU:99901. Every

time such an identifier is mentioned, it is unambiguous which paper is in question. No such

identifiers exist for authors. A technique called smushing is used to provide consolidation of

resources.

If one mention of an unidentified resource, in this case an author, shares a most likely unique

property with another unidentified resource, both resources can be regarded as equivalent.

This is by no means an ideal situation as different authors may have the same name, but for

the best part it works well. However, in the original OAI database, the names of authors

were given values such as “PhD” or “Masters”, sometimes given a title and other times not.

Names of institutes and universities were also commonplace values for author names. This

Ranking Semantic Web Graphs 38

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

frustrated attempts at smushing the dataset and despite several efforts to resolve the issue by

removing the offending author name values and cleaning up the other names, the ranking of

authors would always be highly unreliable, and was abandoned. However, Paper resources

were still rankable, although only with regards a subset of citations that actually exist, and so

work continued.

4.2-GreatestJournal FOAF files
This dataset, introduced in Section 1.3.2. was perhaps the easiest to convert for indexing, but

was probably the most awkward with regards acquisition.

4.2.1-Data Acquisition

This particular dataset was not available in a downloadable archive format, instead it was a

graph of documents on the Web. When user A indicates that he is an acquaintance of user B,

a link is placed in user A’s FOAF file to user B’s FOAF file. Thus, if a software agent were

to visit user A’s FOAF file and that software agent knew how to find links, such as the one

to user B’s FOAF file, then the software agent could apply the same technique to that FOAF

file and continue on through the whole graph. This method is called crawling and is a

common Web technique. Obviously not all FOAF files would be retrieved using this method

as some FOAF files would not be linked by another user. They would not be important to

the graph that would be analysed however for if no other user links to them, they would get

a very low ranking score. GreatestJournal boasts 1.3 million users, many of which probably

fall into the previous category. At time of writing, 325,400 FOAF files have been cached

and indexed, but according to the ranking algorithm which gives an indication of how many

unique nodes exist, only about 370,000 exist.

At first an existing crawler was used, but the crawler was overly complicated and somewhat

buggy. Instead, a new crawler was built featuring just three classes. One class was used as a

console for the crawler, defining a main method that allows the input of a seed file of links

and also storing application data such as which links had already been visited (to prevent

continuously revisiting the same pages). The second class extended Thread and did the

actual FOAF file traversal, data conversion and upload to YARS. The third class was

involved in opening input streams to the web pages. The console class calls a certain number

of instances of the threaded class. The class is threaded so as to keep data available for

Ranking Semantic Web Graphs 39

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

processing at all times. This prevents a possible bottleneck caused by slow downloads of

FOAF files.

4.2.2-Preparation and Indexing

Data conversion again was implemented by use of the Jena API. The FOAF files are already

in RDF-XML so conversion to RDF-NTriples was trivial. There was one obstacle to a

straight through conversion of the files however, and that was a lack of identifiers for the

foaf:Person elements used to describe each user. This had to be manually handled by Java

code written in the threaded class.

Whilst our previous attempt at smushing in the CiteSeer dataset proved unfruitful, one

particular property of foaf:Person was ideal for smushing : foaf:nick. This had the

value of the username of the person on GreatestJournal, and by simply appending this

property’s value onto a set URI, a perfect identifier is created. The property is so ideal for

smushing because every time that the foaf:Person element appears in the dataset, so does

the property. Also each foaf:nick value must be unique so there is no ambiguity possible

and an added bonus, it cannot contain spaces or any characters that might make the new URI

created difficult to handle.

With identifiers for every foaf:Person element appearing manually added, the modified

RDF-XML code was converted by Jena and indexed in a separate instance of YARS to the

CiteSeer data. Although the crawler has not at the time of writing yet managed to do a

complete traversal of the graph of files, there still exists plenty of data to be indexed.

At one stage during the crawl, the YARS indices were built and the NTriples graph queried

for. However many more files have been crawled since and because of time constraints, the

NTriples graph and the Lucene index were created for the entire dataset as it stands by

performing a dump of all data in YARS. This was completed by doing a complete dump of

the YARS dataset which does not require lengthy index building computations. As the data

is output from YARS, the triples with property foaf:knows were added to the NTriples

graph file, and the triples with property foaf:interests were used in the creation of the

Lucene keyword index. They were however mapped back to the foaf:Person element from

Ranking Semantic Web Graphs 40

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

hence it originated, as there exists a node of no specified type with in the dataset.

4.3-US Patent Metadata
This dataset, introduced in Section 1.3.3, is potentially the largest of the datasets. It extends

back as far as 1976, and features millions of metadata entries for both patent applications

and granted patents in four different formats. The work described herein only applies to a

subset of the data, all the patents starting from the first week of 2005.

4.3.1-Dataset Acquisition

The patent metadata is available for free download though an FTP server hosted by the US

Patents Office. The files are weekly releases of zipped files for that weeks granted patents.

In order to access the data, a crawler, was initially created to take an FTP directory and

cache, unzip and index each file. However, after the crawler caches the data from the FTP

site, once it flushes and closes the data stream, when the file is attempted to be re-opened for

unzipping using classes from the java.util.zip package, the file is not recognised as a

valid archive. This issue is sill unresolved, and so as to continue making progress with

indexing the dataset, the files, 63 in all, were manually downloaded.

4.3.2-Preparation and Indexing

The metadata downloaded is encoded in plain XML, sticking to a structure which the Patent

Office refers to as RedBook. By following similar steps as was employed to convert the

CiteSeer archive, this data can be converted to RDF-Ntriples in a parallel fashion (see

Appendix B).

The RedBook format is extremely expressive, with multitudes of layers of elements

employed to create a patent description. If an attempt was made to preserve such a verbose

description of every Patent, the user would be overwhelemed with seemingly meaningless

properties for the resources in the results set. So as to avoid this problem, the specification to

which the RedBook format file is mapped is a much more simplified, but still contains all

the significant data relating to a Patent.

As of the time of writing, an official document outlining the specification has not been

created, however, a new namespace is defined in the data at

Ranking Semantic Web Graphs 41

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

http://sw.deri.org/2006/02/USPatent/ and the local prefix pat: will be used to refer

to this namespace.

The specification features a single type of resource, which is of type pat:Grant (due to a

mistake in an earlier version of the XSLT document, resources of type pat:Patent may

also be found in the dataset, this should just be disregarded) which has a vocabulary of 21

properties to describe it. 19 of these properties are in the new namespace. This is because the

elements used in the original documents are so specific that finding equivalent elements in

existing namespaces becomes difficult.

Again, once the data is converted from plain XML to RDF-XML, Jena is used to convert the

data on again to RDF-NTriples.

The keyword index was built from the values of triples which featured two of the properties

which were used from the Dublin Core namespace, dc:title and dc:description .

Ranking Semantic Web Graphs 42

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Chapter 5: User Interface

For the purposes of a user search and retrieval tool, an application was required to offer the

user the ability to issue the system either a keyword or semantic query, and present the user

with a list of ranked results in a formatted easy comprehensible web page. The main issue

here is formatting the results page. As the metadata for all the resources are stored in YARS,

and YARS returns NTriples results for queries, the application would have to parse these

NTriples results into a formatted HTML response page. Issuing the user with the NTriples

results alone would not be acceptable as to a normal user ill-read on RDF description

languages, such a results page would not be easily digested. In order to achieve this

application, an existing tool was used as its core, called Nodebrowser13.

5.1-Original Nodebrowser
The original application which was used as the core of the new user interface component

was authored by Andreas Harth (a colleague) and myself and uses various pieces of code

authored by Matteo Magni and Hannes Gassert (former colleagues). It is a WAR file, which

when set the path to the YARS backend it services, can be deployed in Apache Tomcat. As

already stated, this application uses YARS as a backend and takes a simple query in the

form of an object. It then queries for resources with this specific object stored in YARS.

Finally, it takes the NTriples results page returned by YARS, serialises it into RDF/XML

and from this, generates a HTML response page. This application was intended for use

where the YARS backend is filled with generic data, and is completely interoperable with

any YARS instance.

One draw back of the original application was that it only offered one simple form of query,

a query for resources with a specific object. This was very restrictive, and would not be

enough for the system described herein.

Another draw back was that the application was ignorant of the schemas of the data

available in YARS. To paraphrase, the original Nodebrowser application had no idea of the

actual meaning of the URIs for the predicates and subject types stored in its YARS backend.

13 http://sw.deri.org/2005/10/nodebrowser/

Ranking Semantic Web Graphs 43

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

This makes it available for use with any YARS instance storing any schema or specification

of data, as it was intended for.

One last drawback was that the application would not be interoperable with a ranking

component as it featured no methods for interacting with said component. Not all datasets

would feature graph traits and so ranking would not be portable to just any data store.

The metadata our three instances of YARS have been filled with have a known structure and

schema and are rankable. For two of the datasets an XSLT stylesheet was used to convert

the data using specific namespaces and specifications, and so the schema is already well

known. For the third dataset (GreatestJournal), the only specification used is that of the

FOAF namespace. The data is also computer generated and so it all has an identical method

of creation, and so the properties of the schema for this dataset are also easily derived. By

exploiting this prior knowledge of the structure of the data a much more advanced and user

friendly tool could be created.

5.2-New Features Added

5.2.1-Lucid HTML Serialisation

The first, and most potent new feature added was to allow a more human digestible HTML

serialisation of the NTriples to take place. The first step was to make a HTML serialisation

class, which reads in the welcome page of the application, a HTML file, and finds a tag

within the file, specifically placed there to indicate where results should be displayed (see

Appendix D.1). Essentially it uses the welcome page html code as a template for building the

results page. To implement a more aesthetically and comprehensible results page format, the

original application was also fitted with the ability to read in a config.xml file (see Appendix

C).

This configuration file is created with the specific schema in question in mind, and allows

the configuration of various serialisations of different properties (predicates) and different

subject types (as defined by the rdfs:type predicate) to be specified. This would allow

conversion back from predicate and subject type URIs into words or phrases (a reversal of

Ranking Semantic Web Graphs 44

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

the creation of the NTriples snippet in Fig 1.2).

Each predicate found within the YARS datastore to which the application is a frontend, must

have its URI listed and be given two additional entries, a human readable label and a priority

or order. In the HTML serialisation process, the URI of the predicate parsed is replaced by

the label and the predicates for a resource are listed according to the order specified. The

motive behind this is that certain properties of resources are more significant than others.

For instance, for the HTML serialisation of each resource, what that resource is should

appear first (is it a paper or an author), then some form of title or name for the resource, then

perhaps some form of description or maybe date, etc. To allow this, each predicate is given

an element in the config file, and each predicate element must have properties denoted by

<uri>, <label> and <order> tags. The lower the order number, the higher up the predicate

it refers to is serialised.

Two optional elements are also offered for each predicate. The first is the <ignore> tag

which allows the predicate to be ignored by the HTML serialisation and thus be skipped

when the results page is displayed if its value is true. This can be used where certain

predicates of a resource are not helpful to a user. An instance of when this was used was to

hide the citeseer:refererecedBy property converted directly over from the equivalent

erroneous property in the CiteSeer dataset. If not specified it defaults to the value false.

The second tag, <internal>, can have three values; -1, 0 or 1. If not specified, it defaults to

the value -1. It refers to the type of object that such a predicate would have, and how it

should be handled by the application. Some properties refer to HTML pages (e.g.

foaf:homepage) and so the objects of these predicates would be serialised as a HTML

hyperlink. This is signified as the value 0. Other properties may be plain text, and will be

treated as such (e.g. dc:title which would be given the value -1). Finally, some properties

may have URIs that refer to resources indexed by the datastore, for instance

citeseer:references would have as object a URI of a resource within the dataset, another

paper. When this is being handled, it offers a link which tells the browser application to

show the data relating to that file. Such properties are given the value 1. Internal links in the

results page are displayed in maroon, external links open in a new browser window and are

Ranking Semantic Web Graphs 45

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

blue.

Subject types must also be listed with their URIs, a label and also a stylesheet class. Each of

these are specified by <type>, <typelabel> and <divclass> respectively. The type of a

resource (e.g. paper, author etc.) is specified as a URI which is the object of the rdfs:type

label. When this is encountered, in the serialisation of the resource, the label is inserted into

the heading to identify what is being described. The divclass allows an aesthetic

amelioration in the results page by defining different stylesheet labels for different types of

resource. These labels must also be reflected in the stylesheet, where different stylesheet

classes can be defined for division resources are displayed in.

This configuration file is parsed and loaded into class variables by a class included in the

application package. The file is parsed upon initialisation of the class (which is passed the

path of the config.xml file) and a reference to the class is passed to the HTML serialisation

methods defined in a separate graph.

5.2.2- Interface with Ranking: Buffered Results, Navigation and Sessions

The original application offered a very simple functionality, give me an object and I’ll return

you a HTML page with all of the results. The interaction with YARS was quite simple, one

query, one results page. However, such simplicity goes out the window when one adapts the

application to interface with the ranking component.

The ranking component returns a list of resources in order of highest rank first. Each

resource must then be wrapped in an N3QL query and sent to YARS. If the results set

included thousands of results, the application would overload.

In order to allow speedy response times, one would have to buffer results, and only query

YARS as necessary. To accomplish this in the application, one simple salient fact can be

pointed to; a user cannot read tens of thousands of results at one time. A limit of ten results

per page was retrofitted into the application.

Buffered results were introduced. When a user enters a query, a request is sent to the ranking

Ranking Semantic Web Graphs 46

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

servlet and the number of results in the response is counted. The first page is then displayed

with the number of results found and the first ten resources serialised. That is to say only ten

queries are sent to YARS. A next option is offered and upon clicking, the next ten results in

order of how they were ranked are displayed, etc.

This was in fact quite difficult to implement in the application. Offering only forward

browsing to a user would be easy, whereby only a next option to load the next 10 results

would be offered; it is the option to revisit a page which makes implementation awkward.

The application had to store and cache all results as they were browsed and maintain

alertness of the current state of browsing. Navigation was then provided on the results page.

One issue this raised was the problem of multiple users accessing the application

simultaneously. To counteract this problem, sessions are used. Sessions are a feature

provided for in Java servlet development to provide specific users with their own copy of

data, or a means of referencing each users own application state. This means that when each

user logs into our system, a new session starts and each user is provided with their own data

cache of previous results, and their own navigation system.

One unresolved problem which the application has is when a user uses their web browser

(external) navigation and not the internal navigation (i.e. click the Back/Forward button on

their Internet Explorer of Firefox application). This confuses the application as to where in

the cache of data the current results being displayed are situated. If the internal navigation is

used again, the application fails to successfully complete the task required. A new query is

required to restart the data cache. Thus, it is imperative only to use the internal navigation

provided on the results page.

5.2.3- In Tab Browsing

This was another feature added to the new application which essentially offers users the

ability to get the details of a resource which appears as an internal link (because of a

predicate with the internal set to 1, e.g. citeseer:references), within the current results

page by clicking on a + displayed to the left of its link. This expands the resource with a new

division displaying its details instead of its link, but in the same location as the link was in

Ranking Semantic Web Graphs 47

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

the results page. If any internal links appear in the new division, they too can be expanded

again. This allows effortless browsing of the graph of resources, allowing tree type

browsing. Once finished with these expanded results, they can be returned to their normal

state again by clicking on the – link provided, which can be done at any level of an

expanded tree of results. See Appendix D.2 and D.4 for screenshots.

5.2.4- Advanced Semantic Searching

The final addition to the original application was to allow the user to specify a semantic

search, or a search which allows the user to specify the exact properties that a resource must

meet before it is returned. It is not as such viable to expect the user to have knowledge of

N3QL or some other advance query language in which to express their requirements,

however using the config.xml file, the application knows all possible subject types and

predicates. Thus the application can dynamically create an advanced semantic search form,

which offers users a choice of possible subject types and properties in drop down HTML

boxes, and the desired values of those properties to be entered into a text field, as reflects the

resources they desire. Once submitted these parameters are then encoded by the application

and used to create an N3QL query for YARS. See Appendix D.3 for a screenshot of the

semantic searching form.

Ranking Semantic Web Graphs 48

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Chapter 6: Search Engine System

With an efficient algorithm package (with HTTP interface) for computing ranking scores

and dynamic ranking values given an NTriple file as input, an optimized means of indexing

RDF in NTriples, three datasets with a means of conversion to NTriples, three keyword

indexes and an advanced user interface tool, creating the final search engine systems for the

three datasets is the equivalent of a jigsaw puzzle. Three such systems were created, one for

each dataset. Each system requires three components, each with a HTTP interface and

deployable within a Tomcat Apache environment, and so in total, nine components were

deployed on nine different servers, allowing a Web Services type architecture to be

employed.

6.1-System Architecture
The system architecture reflects a Web Services type coordination where each main service

of the system is isolated as a single component with its own interface (the exception is

ranking and keyword which are conglomerated for efficiency). Once the datastore and

keyword index have been filled for a dataset, and the NTriple graph data isolated and

provided to the ranking component, the system has all the prerequisites it needs and can be

built on top of it.

Fig. 6.1 shows said architecture, with all of the involved components, the dataflow between

them. It also shows the partition between runtime operations and pre-computed operations

necessary. All of the runtime operations are instantiated by a user request. All other

operations are done in setting the system up. All runtime dataflows are through HTTP

methods, where requests are a HTTP GET or POST and all responses are formatted results

page which are parsed by the receiving component.

Differentiated between, in Fig. 6.1, are the requests and responses for a semantic query and

a keyword query, as desired by a user. Shown in red are these for a keyword query, and

shown in blue are for a semantic query. As the keyword index is within the same component

as the ranking algorithm, the ranking algorithm can get a list of hits for a keyword query

Ranking Semantic Web Graphs 49

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

internally in the component. However for a semantic query, the component must send a

request to YARS to get a list of all hits for the query before it can rank them.

Web

Data
Acquisition &
Conversion

(Crawler/Archive &
XSLT and/or Jena as

required)

DataStore
(YARS)

User Interface
(NodeBrowser)

User

Original
Metadata

NTriples Graphs and
Subject keyword mappings

N3 Metadata

HTML Interface &
Ranked Results

HTML Form
Query

Keyword Index
(Lucene)

Ranking
Package

S
ervlet

Interface

Keyword
Query
And

Ranking
Params

Semantic
Query
And

Ranking
Params

Ranked
List of

Resources

Semantic
Query

List of
Matched

 Resources

Buffered
Queries for
Resource
Metadata

Ntriple
Metadata

For
Each

resource

Runtime

 Figure 6.1 Architecture of the search engine system

6.2-Runtime Operation
To path taken for a user specified query is as follows, the user interface sends either the

semantic query (in the form of a YARS URI with the newly created N3QL query encoded

and appended onto it) or the keyword query to the ranking and keyword index component. It

also sends the ranking parameters (clustering and local ranking values). This component

then builds a list of hits for either the keyword query (completed internally) or the semantic

query (sent to YARS) and ranks them according to the parameters received. It creates a

specially formatted response page of ordered results, which the user interface parses. Now

that the user interface component knows which resources to retrieve first, it begins building

YARS queries, one for each resource and ten at a time, to YARS requesting the data

associated with that resource. YARS returns an NTriples results page for each query which

Ranking Semantic Web Graphs 50

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

is then parsed and serialised to HTML by the user interface component.

6.3-Final Implementation and Performance
Final implementation of the above architecture was implemented for the three architectures.

As previously stated the three main runtime components were deployed for the three

datasets. Each implementation of the architecture proved to be successful in its intended

operation.

For the CiteSeer dataset, there was about 300,000 nodes in the global ranking graph and

about 1.3 million links (requirements for being a node in the graph were that a paper either

cite or be cited by another). Those papers that were returned near the top of the results set

were indeed important papers in the area bound by the query. This was easily verified by

examining the citeseer:referenced_by property, and seeing that those near the top had

been cited numerous times by other important papers. Trying to validate the results

subjectively is quite difficult, and one must have faith in the idea of peer review which the

algorithm is based on.

Dynamic ranking also proved a major success with response times for even large results sets

being quite brief, less than two or three seconds generally.

For the GreatestJournal system, there was about 355,000 nodes present and a total of 5.4

million unique links. The number of links was initially of concern with regard performance

issues, however this concern was devastated by empirical evidence that the architecture

could handle the size of the graph. Indeed response times were again quite astoundingly low

when one puts it in the perspective of the computational effort involved.

Again, for the patent dataset search engine, results were quite pleasing with response times

also being very low. The number of nodes in the global graph was 1.6 million (many of

which have yet to be downloaded into the system). The number of links was just over three

million. Again response times were very pleasing, requiring no patience from the user.

Ranking Semantic Web Graphs 51

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Conclusion

The work described herein was in parts, very challenging but ultimately rewarding. A lot of

programming expertise was required in Java to implement the described components of the

architecture. Also, a firm grounding in Semantic Web technologies were of great aid in the

pursuance of the work.

One major stumbling block in the project was the time taken for certain operations to

successfully complete. These include obtaining, converting and indexing all of the data.

Many several gigabytes of data was converted and analysed, cached and indexed. Such

operations ran for days and made progress at times quite slow. This gravely affected the

projected timeline of the work, and so some of the work has not been fully completed.

However, all the design and application development is finished, and the tasks that remain,

including YARS index building, a fully inclusive crawl of the GreatestJournal FOAF pages

and finally, indexing of all patent data; all these tasks were put aside as they would take too

long. With regards indexing the older patent data, much effort was put into creating a means

of converting the arcane data format which they use, called GreenBook, into RDF.

Unfortunately however, to date, this has not been used. Plans for future work do indeed

include all these above tasks.

With regards building the YARS indexes, the purpose of this is to fully enable semantic

searches, which currently are unavailable for the GreatestJournal and patent search engines,

and have not been updated for the CiteSeer engine. These indexes involve essentially

clicking an option on a web form, but take days to complete. Plans for future work also

include this simple task.

Originally in the project, the ranking analysis techniques were intended to be pre-computed

and entered into the datastore as a property of each resource. Dynamic ranking was not seen

as a viable option, as it was presumed to be too slow and lead to response times for requests

by users that would test their patience. It was a delight to see that the ranking was both

scalable and fast, and response times for the architecture, even with runtime dynamic

ranking are delightfully brisk.

Ranking Semantic Web Graphs 52

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

The three applications provided are indeed quite user friendly and highly practical, and the

results pages are easily browsed and read. In fact, I myself used the CiteSeer search engine

for the purposes of literature review and research for the project.

Another noteworthy fact is that the system is highly portable. Once data is in RDF and has

some graph inherent in it, the above described architecture is applicable. Hopefully practical

use of the application will be extended to other datasets and areas, and colleagues of mine

have already expressed interest in implementing such a system for their own data.

All in all, the work presented here in was a (somewhat unexpected) success, in particular

with regard to response times for queries, and introduces a new means of bring together two

research areas, the ever nascent area of the Semantic Web, and also the area of ranking

algorithms and PageRank.

Ranking Semantic Web Graphs 53

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

Bibliography and References

[1] S. Decker et al., “The Semantic Web: The Roles of XML and RDF”, IEEE Internet
Computing, (Sep./Oct. 2000).

[2] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. “The Pagerank
Citation Ranking: Bringing order to the web.” Technical report, Stanford Digital Library
Technologies Project, 1998.

[3] T.H. Haveliwala. “Topic-sensitive PageRank”. In Proceedings of the Eleventh
International World Wide Web Conference, 2002

[4] S. D. Kamvar et al. “Extrapolation Methods for Accelerating PageRank Computation”.
In Proceedings of the Twelfth International World Wide Web Conference, 2003

[5] A. Harth, S. Decker. “Optimized Index Structures for Querying RDF from the Web”,
Proceedings of the 3rd Latin American Web Congress, Argentina, October 2005.

Ranking Semantic Web Graphs 54

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

APPENDICES

A: CITESEER OAI TO RDF-NTRIPLES CONVERSION

A.1: XSLT USED
<?xml version="1.0"?>
<!DOCTYPE stylesheet [
<!ENTITY cr "<xsl:text>
</xsl:text>">
]>

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:oai_citeseer="http://copper.ist.psu.edu/oai/oai_citeseer/"
 xmlns="http://sw.deri.org/2005/07/CiteSeer/"
 exclude-result-prefixes="content oai_citeseer"
 version="1.0">

<xsl:output indent="yes" cdata-section-elements="content:encoded" />

<!-- general element conversions -->

<xsl:template match="/">
 <rdf:RDF>
 <xsl:apply-templates/>
 </rdf:RDF>
</xsl:template>

<xsl:template match="record">
 <Paper rdf:about="{header/identifier}">
 <xsl:apply-templates />
 </Paper>
</xsl:template>

<xsl:template match="dc:creator|creator">
&cr;
 <dc:creator><xsl:value-of select="." /></dc:creator>
</xsl:template>

<xsl:template match="dc:rights|rights">
&cr;
 <dc:rights><xsl:value-of select="." /></dc:rights>
</xsl:template>

<xsl:template match="dc:date|date">
&cr;
 <dc:date><xsl:value-of select="." /></dc:date>
</xsl:template>

<xsl:template match="dc:subject|subject">
&cr;
 <dc:subject><xsl:value-of select="." /></dc:subject>
</xsl:template>

<xsl:template match="dc:format|format">
&cr;
 <dc:format><xsl:value-of select="." /></dc:format>
</xsl:template>

<xsl:template match="address">
&cr;
 <address><xsl:value-of select="." /></address>
</xsl:template>

<xsl:template match="dc:source|source">
&cr;
 <dc:source rdf:resource= "{.}" />
</xsl:template>

<xsl:template match="datestamp">
&cr;

Ranking Semantic Web Graphs 55

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

 <datestamp><xsl:value-of select="." /></datestamp>
</xsl:template>

<xsl:template match="dc:language|language">
&cr;
 <dc:language><xsl:value-of select="." /></dc:language>
</xsl:template>

<xsl:template match="title|dc:title">
&cr;
 <dc:title><xsl:value-of select="." /></dc:title>
</xsl:template>

<xsl:template match="description|dc:description">
&cr;
 <dc:description>
 <xsl:value-of select="." />
 </dc:description>
</xsl:template>

<xsl:template match="contributor|dc:contributor">
&cr;
 <dc:contributor><xsl:value-of select="." /></dc:contributor>
</xsl:template>

<xsl:template match="identifier">
&cr;
 <xsl:choose>
 <xsl:when test="starts-with(.,'http')">
 <dc:identifier rdf:resource= "{.}" />
 </xsl:when>
 <xsl:otherwise>
 <identifier><xsl:value-of select="." /></identifier>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template match="publisher|dc:publisher">
&cr;
 <dc:publisher><xsl:value-of select="." /></dc:publisher>
</xsl:template>

<xsl:template match="setSpec">
&cr;
 <setSpec><xsl:value-of select="." /></setSpec>
</xsl:template>

<xsl:template match="oai_citeseer:relation|relation">
&cr;
<xsl:choose>
 <xsl:when test="@type = 'References'">
 <references rdf:resource ="{oai_citeseer:uri|uri}" />
 </xsl:when>
 <xsl:when test="@type = 'Is Referenced By'">
 <referencedBy rdf:resource ="{oai_citeseer:uri|uri}" />
 </xsl:when>
</xsl:choose>
</xsl:template>

<xsl:template match="oai_citeseer:author|author">
&cr;
 <xsl:variable name = "name" select = 'translate(@name," ","_")' />
 <dc:creator><xsl:value-of select="@name" /></dc:creator>
 <authorPerson>
 <foaf:Person>
 <xsl:attribute name="rdf:about">
 <xsl:value-of select = 'concat("http://sw.deri.org/2005/07/CiteSeer/authors/",$name)' />
 </xsl:attribute>
 <foaf:name>
 <xsl:value-of select="@name" />
 </foaf:name>
 <affiliation>
 <xsl:value-of select="affiliation" />
 </affiliation>
 <authorOf>
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select = '../../../header/identifier' />
 </xsl:attribute>
 </authorOf>
 </foaf:Person>
 </authorPerson>
</xsl:template>
</xsl:transform>

Ranking Semantic Web Graphs 56

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

A.2:CONVERSION PATH OF A SINGLE CITESEER ENTRY

A.2.1:OAI (XML)
<record>
<header>
<identifier>oai:CiteSeerPSU:99901</identifier>
<datestamp>1996-06-13</datestamp>
<setSpec>CiteSeerPSUset</setSpec>
</header>
<metadata>
<oai_citeseer:oai_citeseer xmlns:oai_citeseer="http://copper.ist.psu.edu/oai/oai_citeseer/" xmlns:dc
="http://purl.org/dc/elements/1.1/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://copper.ist.psu.edu/oai/oai_citeseer/
http://copper.ist.psu.edu/oai/oai_citeseer.xsd ">
 <dc:title>Action selection in a hypothetical house robot: Using those RL numbers</dc:title>
 <oai_citeseer:author name="Mark Humphrys">
 <affiliation>University of Cambridge , Computer Laboratory</affiliation>
 </oai_citeseer:author>
 <dc:subject>Mark Humphrys Action selection in a hypothetical house robot: Using those RL
numbers</dc:subject>
 <dc:description>Reinforcement Learning (RL) methods, in contrast to
many forms of machine learning, build up value functions
for actions. That is, an agent not only knows
`what' it wants to do, it also knows `how much' it wants
to do it. Traditionally, the latter are used to produce
the former and are then ignored, since the agent is assumed
to act alone. But the latter numbers contain useful
information - they tell us how much the agent will
suffer if its action is not executed (perhaps not much).
They tell us which actions the agent can compromise
on and which it cannot. It is clear that many interesting
systems possess multiple parallel and conflicting
goals, all demanding attention, and none of which
can be fully satisfied except at the expense of others.
Animals are the prime example of such systems. In
[Humphrys, 1995], I introduced the W-learning algorithm,
showing one method of resolving competition
among behaviors automatically by reference to their
RL values. The scheme has the unusual featu...</dc:description>
 <dc:contributor>The Pennsylvania State University CiteSeer Archives</dc:contributor>
 <dc:publisher>unknown</dc:publisher>
 <dc:date>1996-06-13</dc:date>
 <dc:format>ps</dc:format>
 <dc:identifier>http://citeseer.ist.psu.edu/99901.html</dc:identifier>
 <dc:source>http://www.compapp.dcu.ie/~humphrys/PhD/../Publications/f.SOCO96.ps.gz</dc:source>
 <dc:language>en</dc:language>
 <oai_citeseer:relation type="References">
 <oai_citeseer:uri>oai:CiteSeerPSU:18816</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="References">
 <oai_citeseer:uri>oai:CiteSeerPSU:194839</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="References">
 <oai_citeseer:uri>oai:CiteSeerPSU:163604</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="References">
 <oai_citeseer:uri>oai:CiteSeerPSU:87435</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="References">
 <oai_citeseer:uri>oai:CiteSeerPSU:142710</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="Is Referenced By">
 <oai_citeseer:uri>oai:CiteSeerPSU:8115</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="Is Referenced By">
 <oai_citeseer:uri>oai:CiteSeerPSU:230110</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="Is Referenced By">
 <oai_citeseer:uri>oai:CiteSeerPSU:69071</oai_citeseer:uri>
 </oai_citeseer:relation>
 <oai_citeseer:relation type="Is Referenced By">
 <oai_citeseer:uri>oai:CiteSeerPSU:32645</oai_citeseer:uri>
 </oai_citeseer:relation>
 <dc:rights>unrestricted</dc:rights>
</oai_citeseer:oai_citeseer>
</metadata>
</record>

Ranking Semantic Web Graphs 57

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

A.2.2:RDF-XML
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns="http://sw.deri.org/2005/07/CiteSeer/">
<Paper rdf:about="oai:CiteSeerPSU:99901">
<identifier>oai:CiteSeerPSU:99901</identifier>
<datestamp>1996-06-13</datestamp>
<setSpec>CiteSeerPSUset</setSpec>
<dc:title>Action selection in a hypothetical house robot: Using those RL numbers</dc:title>
<dc:creator>Mark Humphrys</dc:creator>
<authorPerson>
<foaf:Person rdf:about="http://sw.deri.org/2005/07/CiteSeer/authors/Mark_Humphrys">
<foaf:name>Mark Humphrys</foaf:name>
<affiliation>University of Cambridge , Computer Laboratory</affiliation>
<authorOf rdf:resource="oai:CiteSeerPSU:99901"/>
</foaf:Person>
</authorPerson>
<dc:subject>Mark Humphrys Action selection in a hypothetical house robot: Using those RL
numbers</dc:subject>
<dc:description>Reinforcement Learning (RL) methods, in contrast tomany forms of machine learning, build
up value functionsfor actions. That is, an agent not only knows`what' it wants to do, it also knows `how
much' it wantsto do it. Traditionally, the latter are used to producethe former and are then ignored,
since the agent is assumedto act alone. But the latter numbers contain usefulinformation - they tell us
how much the agent willsuffer if its action is not executed (perhaps not much).They tell us which actions
the agent can compromiseon and which it cannot. It is clear that many interestingsystems possess multiple
parallel and conflictinggoals, all demanding attention, and none of whichcan be fully satisfied except at
the expense of others.Animals are the prime example of such systems. In[Humphrys, 1995], I introduced the
W-learning algorithm,showing one method of resolving competitionamong behaviors automatically by reference
to theirRL values. The scheme has the unusual featu...</dc:description>
<dc:contributor>The Pennsylvania State University CiteSeer Archives</dc:contributor>
<dc:publisher>unknown</dc:publisher>
<dc:date>1996-06-13</dc:date>
<dc:format>ps</dc:format>
<dc:identifier rdf:resource="http://citeseer.ist.psu.edu/99901.html"/>
<dc:source rdf:resource="http://www.compapp.dcu.ie/~humphrys/PhD/../Publications/f.SOCO96.ps.gz"/>
<dc:language>en</dc:language>
<references rdf:resource="oai:CiteSeerPSU:18816"/>
<references rdf:resource="oai:CiteSeerPSU:194839"/>
<references rdf:resource="oai:CiteSeerPSU:163604"/>
<references rdf:resource="oai:CiteSeerPSU:87435"/>
<references rdf:resource="oai:CiteSeerPSU:142710"/>
<referencedBy rdf:resource="oai:CiteSeerPSU:8115"/>
<referencedBy rdf:resource="oai:CiteSeerPSU:230110"/>
<referencedBy rdf:resource="oai:CiteSeerPSU:69071"/>
<referencedBy rdf:resource="oai:CiteSeerPSU:32645"/>
<dc:rights>unrestricted</dc:rights>
</Paper>
</rdf:RDF>

A.2.3:RDF-NTRIPLES
<http://sw.deri.org/2005/07/CiteSeer/authors/Mark_Humphrys>
<http://sw.deri.org/2005/07/CiteSeer/affiliation> "University of Cambridge , Computer Laboratory" .
<http://sw.deri.org/2005/07/CiteSeer/authors/Mark_Humphrys> <http://xmlns.com/foaf/0.1/name> "Mark
Humphrys" .
<http://sw.deri.org/2005/07/CiteSeer/authors/Mark_Humphrys> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://xmlns.com/foaf/0.1/Person> .
<http://sw.deri.org/2005/07/CiteSeer/authors/Mark_Humphrys> <http://sw.deri.org/2005/07/CiteSeer/authorOf>
<oai:CiteSeerPSU:99901> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/referencedBy> <oai:CiteSeerPSU:230110> .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/language> "en" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/date> "1996-06-13" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/identifier> "oai:CiteSeerPSU:99901" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:194839> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/setSpec> "CiteSeerPSUset" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/publisher> "unknown" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/contributor> "The Pennsylvania State University
CiteSeer Archives" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/referencedBy> <oai:CiteSeerPSU:32645> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:163604> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:87435> .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/description> "Reinforcement Learning (RL)
methods, in contrast tomany forms of machine learning, build up value functionsfor actions. That is, an
agent not only knows`what' it wants to do, it also knows `how much' it wantsto do it. Traditionally, the
latter are used to producethe former and are then ignored, since the agent is assumedto act alone. But the
latter numbers contain usefulinformation - they tell us how much the agent willsuffer if its action is not
executed (perhaps not much).They tell us which actions the agent can compromiseon and which it cannot. It
is clear that many interestingsystems possess multiple parallel and conflictinggoals, all demanding
attention, and none of whichcan be fully satisfied except at the expense of others.Animals are the prime
example of such systems. In[Humphrys, 1995], I introduced the W-learning algorithm,showing one method of

Ranking Semantic Web Graphs 58

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

resolving competitionamong behaviors automatically by reference to theirRL values. The scheme has the
unusual featu..." .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/creator> "Mark Humphrys" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/authorPerson>
<http://sw.deri.org/2005/07/CiteSeer/authors/Mark_Humphrys> .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/subject> "Mark Humphrys Action selection in a
hypothetical house robot: Using those RL numbers" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/source>
<http://www.compapp.dcu.ie/~humphrys/PhD/../Publications/f.SOCO96.ps.gz> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/referencedBy> <oai:CiteSeerPSU:8115> .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/rights> "unrestricted" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/format> "ps" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/identifier>
<http://citeseer.ist.psu.edu/99901.html> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/datestamp> "1996-06-13" .
<oai:CiteSeerPSU:99901> <http://purl.org/dc/elements/1.1/title> "Action selection in a hypothetical house
robot: Using those RL numbers" .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:18816> .
<oai:CiteSeerPSU:99901> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2005/07/CiteSeer/Paper> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/referencedBy> <oai:CiteSeerPSU:69071> .
<oai:CiteSeerPSU:99901> <http://sw.deri.org/2005/07/CiteSeer/references> <oai:CiteSeerPSU:142710> .

Ranking Semantic Web Graphs 59

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

B: PATENT REDBOOK XML TO RDF-NTRIPLES CONVERSION

B.1: XSLT USED
<?xml version="1.0"?>
<!DOCTYPE stylesheet [
<!ENTITY cr "<xsl:text>
</xsl:text>">
]>

<xsl:transform
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns="http://sw.deri.org/2006/02/USPatent/"
 version="1.0">
<xsl:output indent="yes" />

<!-- general element conversions -->
<xsl:variable name="docNum">
 <!--<xsl:value-of select='number(/us-patent-grant/us-bibliographic-data-grant/publication-
reference/document-id/doc-number)' />-->
 <xsl:call-template name="removezeroes">
 <xsl:with-param name="text"
 select="/us-patent-grant/us-bibliographic-data-grant/publication-reference/document-id/doc-
number"/>
 <xsl:with-param name="letter"
 select=""/>
 </xsl:call-template>
</xsl:variable>

<xsl:template name="removezeroes">
 <!-- named template called by main template below -->
 <xsl:param name="text" />
 <xsl:param name="letter" />
 <xsl:variable name="int">
 <xsl:value-of select='number($text)' />
 </xsl:variable>

 <xsl:choose>
 <xsl:when test = "string-length($text) = 1">
 <xsl:choose>
 <xsl:when test = "$int = 'NaN'">
 <xsl:value-of select = "concat($letter,$text)" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select = "concat($letter,$int)" />
 </xsl:otherwise>
 </xsl:choose>
 </xsl:when>

 <xsl:when test = "$int = 'NaN'">
 <xsl:call-template name="removezeroes">
 <xsl:with-param name="text"
 select="substring($text,2)"/>
 <xsl:with-param name="letter"
 select="concat($letter,substring($text,1,1))"/>
 </xsl:call-template>
 </xsl:when>

 <!-- If no more iterations to do, add computed value to result tree. -->
 <xsl:otherwise>
 <xsl:value-of select="concat($letter,$int)"/>
 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:variable name="uspto">
<xsl:value-of select='concat("http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=",$docNum)' />
</xsl:variable>

<xsl:variable name="docID">
<xsl:value-of select='concat("http://sw.deri.org/2006/02/USPatent/PatentID#",$docNum)' />
</xsl:variable>

<xsl:template match="text()">

</xsl:template>

<xsl:template match="/">
 <rdf:RDF>

Ranking Semantic Web Graphs 60

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

 <xsl:apply-templates/>
 </rdf:RDF>
</xsl:template>

<xsl:template match="us-patent-grant">
 <Grant>
 <xsl:attribute name="rdf:about">
 <xsl:value-of select = '$docID' />
 </xsl:attribute>
 <usptoLink>
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select = '$uspto' />
 </xsl:attribute>
 </usptoLink>
 <xsl:apply-templates/>
 </Grant>
</xsl:template>

<xsl:template match="us-bibliographic-data-grant">
 <xsl:if test = "classification-locarno">
 <internationalClassification><xsl:value-of select="classification-locarno/main-classification"
/></internationalClassification>
 </xsl:if>
 <xsl:if test = "classification-national">
 <parentUSClassification><xsl:value-of select="translate(substring(classification-national/main-
classification, 1, 3),' ','')" /></parentUSClassification>
 <mainUSClassification>
 <xsl:value-of select="translate(substring(classification-national/main-classification, 1, 3),'
','')" />
 <xsl:value-of select="'/'" />
 <xsl:value-of select="normalize-space(substring(classification-national/main-classification, 4, 3))"
/>
 <xsl:variable name = "end" select = 'substring(classification-national/main-classification, 7)' />
 <xsl:choose>
 <xsl:when test="$end = ''" />
 <xsl:when test="starts-with($end,'-')">
 <xsl:value-of select="$end" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="'.'" />
 <xsl:value-of select="$end" />
 </xsl:otherwise>
 </xsl:choose>
 </mainUSClassification>
 <xsl:for-each select="classification-national/further-classification">
 <furtherUSClassification>
 <xsl:value-of select="translate(substring(., 1, 3),' ','')" />
 <xsl:value-of select="'/'" />
 <xsl:value-of select="normalize-space(substring(., 4, 3))" />
 <xsl:variable name = "end" select = 'substring(., 7)' />
 <xsl:choose>
 <xsl:when test="$end = ''" />
 <xsl:when test="starts-with($end,'-')">
 <xsl:value-of select="$end" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="'.'" />
 <xsl:value-of select="$end" />
 </xsl:otherwise>
 </xsl:choose>
 </furtherUSClassification>
 <parentUSClassification><xsl:value-of select="normalize-space(substring(.,1,3))"
/></parentUSClassification>
 </xsl:for-each>
 </xsl:if>

 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="publication-reference">
 <xsl:if test = "document-id/doc-number">
 <number><xsl:value-of select="$docNum" /></number>
 </xsl:if>
 <xsl:if test = "document-id/country">
 <country><xsl:value-of select="document-id/country" /></country>
 </xsl:if>
 <xsl:if test= "document-id/date">
 <dc:date>
 <xsl:choose>
 <xsl:when test="string-length(document-id/date)='8'">
 <xsl:value-of select="substring(document-id/date, 1, 4)" />
 <xsl:value-of select="'-'" />
 <xsl:value-of select="substring(document-id/date, 5, 2)" />
 <xsl:value-of select="'-'" />

Ranking Semantic Web Graphs 61

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

 <xsl:value-of select="substring(document-id/date, 7, 2)" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="document-id/date" />
 </xsl:otherwise>
 </xsl:choose>
 </dc:date>
 </xsl:if>
</xsl:template>

<xsl:template match="us-term-of-grant">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="length-of-grant">
 <term><xsl:value-of select="." /></term>
</xsl:template>

<xsl:template match="invention-title">
 <dc:title><xsl:value-of select="." /></dc:title>
</xsl:template>

<xsl:template match="references-cited">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="citation">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match = "us-field-of-classification-search">
<xsl:for-each select="classification-national/main-classification">
&cr;
 <usFOCS>
 <xsl:value-of select="translate(substring(., 1, 3),' ','')" />
 <xsl:value-of select="'/'" />
 <xsl:value-of select="normalize-space(substring(., 4, 3))" />
 <xsl:variable name = "end" select = 'substring(., 7)' />
 <xsl:choose>
 <xsl:when test="$end = ''" />
 <xsl:when test="starts-with($end,'-')">
 <xsl:value-of select="$end" />
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="'.'" />
 <xsl:value-of select="$end" />
 </xsl:otherwise>
 </xsl:choose>
 </usFOCS>
</xsl:for-each>
</xsl:template>

<xsl:template match="patcit">
&cr;
 <xsl:variable name = "country" select = 'document-id/country' />
 <xsl:choose>
 <xsl:when test="$country = 'US'">
 <xsl:variable name="docNumb">
 <xsl:call-template name="removezeroes">
 <xsl:with-param name="text"
 select="document-id/doc-number"/>
 <xsl:with-param name="letter"
 select=""/>
 </xsl:call-template>
 </xsl:variable>
 <citesUSPatent>
 <Grant>
 <xsl:attribute name="rdf:about">
 <xsl:value-of select = 'concat("http://sw.deri.org/2006/02/USPatent/PatentID#",$docNumb)' />
 </xsl:attribute>
 <citedByUSPatent>
 <xsl:attribute name="rdf:resource">
 <xsl:value-of select = 'concat("http://sw.deri.org/2006/02/USPatent/PatentID#",$docNum)' />
 </xsl:attribute>
 </citedByUSPatent>
 </Grant>
 </citesUSPatent>
 </xsl:when>
 <xsl:otherwise>
 <citesOther><xsl:value-of select = "concat('Patent: Country-', $country, ' Number-', document-
id/doc-number)" /></citesOther>

Ranking Semantic Web Graphs 62

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

 </xsl:otherwise>
 </xsl:choose>
</xsl:template>

<xsl:template match="parties">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="applicants">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="applicant">
&cr;
 <xsl:variable name = "fullname" select = 'concat(addressbook/first-name," ",addressbook/last-name)' />
 <applicant><xsl:value-of select="$fullname" /></applicant>
</xsl:template>

<xsl:template match="agents">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="agent">
&cr;
<xsl:choose>
 <xsl:when test="addressbook/orgname">
 <agent><xsl:value-of select="addressbook/orgname" /></agent>
 </xsl:when>
 <xsl:when test="addressbook/first-name">
 <xsl:variable name = "fullname" select = 'concat(addressbook/first-name," ",addressbook/last-name)' />
 <agent><xsl:value-of select="$fullname" /></agent>
 </xsl:when>
 <xsl:otherwise />
</xsl:choose>
</xsl:template>

<xsl:template match="assignees">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="assignee">
&cr;
<xsl:choose>
 <xsl:when test="addressbook/orgname">
 <assignee><xsl:value-of select="addressbook/orgname" /></assignee>
 </xsl:when>
 <xsl:when test="addressbook/first-name">
 <xsl:variable name = "fullname" select = 'concat(addressbook/first-name," ",addressbook/last-name)' />
 <assignee><xsl:value-of select="$fullname" /></assignee>
 </xsl:when>
 <xsl:otherwise />
</xsl:choose>
</xsl:template>

<xsl:template match="examiners">
&cr;
 <xsl:apply-templates/>
</xsl:template>

<xsl:template match="primary-examiner">
&cr;
 <xsl:variable name = "fullname" select = 'concat(first-name," ",last-name)' />
 <primaryExaminer><xsl:value-of select="$fullname" /></primaryExaminer>
</xsl:template>

<xsl:template match="assistant-examiner">
&cr;
 <xsl:variable name = "fullname" select = 'concat(first-name," ",last-name)' />
 <assistantExaminer><xsl:value-of select="$fullname" /></assistantExaminer>
</xsl:template>

<xsl:template match ="abstract">
&cr;
 <xsl:for-each select="p">
 <dc:description>
 <xsl:value-of select='concat("{", substring(@id,3) , "}" , .)' />
 </dc:description>
 </xsl:for-each>
</xsl:template>
</xsl:transform>

Ranking Semantic Web Graphs 63

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

B.2:CONVERSION PATH OF A SINGLE PATENT ENTRY

B.2.1:REDBOOK(XML)
<?xml version="1.0" encoding="UTF-8"?>
<us-patent-grant lang="EN" dtd-version="v40 2004-12-02" file="USD0500576-20050111.XML" status="SAMPLE-
DATA" id="us-patent-grant" country="US" date-produced="20041228" date-publ="20050111">
<us-bibliographic-data-grant>
<publication-reference>
<document-id>
<country>US</country>
<doc-number>D0500576</doc-number>
<kind>S1</kind>
<date>20050111</date>
</document-id>
</publication-reference>
<application-reference appl-type="design">
<document-id>
<country>US</country>
<doc-number>29178812</doc-number>
<date>20030331</date>
</document-id>
</application-reference>
<us-application-series-code>29</us-application-series-code>
<us-term-of-grant>
<length-of-grant>14</length-of-grant>
</us-term-of-grant>
<classification-locarno>
<edition>7</edition>
<main-classification>0101</main-classification>
</classification-locarno>
<classification-national>
<country>US</country>
<main-classification>D 1199</main-classification>
<further-classification> D1125</further-classification>
<further-classification>426104</further-classification>
<further-classification>D21386</further-classification>
</classification-national>
<invention-title id="d0e53">Food blend product</invention-title>
<references-cited>
<citation>
<patcit num="00001">
<document-id>
<country>US</country>
<doc-number>450378</doc-number>
<kind>A</kind>
<name>Robinson</name>
<date>18910400</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>451461</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00002">
<document-id>
<country>US</country>
<doc-number>D174778</doc-number>
<kind>S</kind>
<name>Smith</name>
<date>19550500</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>D 6601</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00003">
<document-id>
<country>US</country>
<doc-number>3589914</doc-number>
<kind>A</kind>
<name>Cooper et al.</name>
<date>19710600</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>426104</main-
classification></classification-national>
</citation>

Ranking Semantic Web Graphs 64

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

<citation>
<patcit num="00004">
<document-id>
<country>US</country>
<doc-number>4192899</doc-number>
<kind>A</kind>
<name>Roth</name>
<date>19800300</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>426513</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00005">
<document-id>
<country>US</country>
<doc-number>D296377</doc-number>
<kind>S</kind>
<name>Skiver et al.</name>
<date>19880600</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>D 1199</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00006">
<document-id>
<country>US</country>
<doc-number>5447584</doc-number>
<kind>A</kind>
<name>Shakespeare et al.</name>
<date>19950900</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>156 63</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00007">
<document-id>
<country>US</country>
<doc-number>5458433</doc-number>
<kind>A</kind>
<name>Stastny</name>
<date>19951000</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>4034081</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00008">
<document-id>
<country>US</country>
<doc-number>D393345</doc-number>
<kind>S</kind>
<name>Clegg et al.</name>
<date>19980400</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>D 2869</main-
classification></classification-national>
</citation>
<citation>
<patcit num="00009">
<document-id>
<country>US</country>
<doc-number>D402227</doc-number>
<kind>S</kind>
<name>Granger et al.</name>
<date>19981200</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>D11131</main-
classification></classification-national>
</citation>

Ranking Semantic Web Graphs 65

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

<citation>
<patcit num="00010">
<document-id>
<country>US</country>
<doc-number>D409356</doc-number>
<kind>S</kind>
<name>Vodhanel, Jr.</name>
<date>19990500</date>
</document-id>
</patcit>
<category>cited by examiner</category>
<classification-national><country>US</country><main-classification>D 1199</main-
classification></classification-national>
</citation>
</references-cited>
<number-of-claims>1</number-of-claims>
<us-exemplary-claim>1</us-exemplary-claim>
<field-of-search>
<classification-national>
<country>US</country>
<main-classification>D 1199</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>D 1125-127</main-classification>
<additional-info>unstructured</additional-info>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>D 1106</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>426104</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>426513</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>426 92</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>426558-560</main-classification>
<additional-info>unstructured</additional-info>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>D21385-389</main-classification>
<additional-info>unstructured</additional-info>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>D21484</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>446 85</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>273288</main-classification>
</classification-national>
<classification-national>
<country>US</country>
<main-classification>D11131</main-classification>
</classification-national>
</field-of-search>
<figures>
<number-of-drawing-sheets>2</number-of-drawing-sheets>
<number-of-figures>9</number-of-figures>
</figures>
<parties>
<applicants>
<applicant sequence="001" app-type="applicant-inventor" designation="us-only">
<addressbook>
<last-name>Kraus</last-name>
<first-name>Gerald L.</first-name>
<address>
<city>Plymouth</city>
<state>WI</state>
<country>US</country>

Ranking Semantic Web Graphs 66

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

</address>
</addressbook>
<nationality>
<country>omitted</country>
</nationality>
<residence>
<country>US</country>
</residence>
</applicant>
</applicants>
<agents>
<agent sequence="01" rep-type="attorney">
<addressbook>
<orgname>Reinhart Boerner Van Deuren S.E.</orgname>
<address>
<country>unknown</country>
</address>
</addressbook>
</agent>
</agents>
</parties>
<assignees>
<assignee>
<addressbook>
<orgname>Sargento Foods, Inc.</orgname>
<role>02</role>
<address>
<city>Plymouth</city>
<state>WI</state>
<country>US</country>
</address>
</addressbook>
</assignee>
</assignees>
<examiners>
<primary-examiner>
<last-name>Burgess</last-name>
<first-name>Pamela</first-name>
<department>2911</department>
</primary-examiner>
</examiners>
</us-bibliographic-data-grant>
</us-patent-grant>

B.2.2:RDF-XML
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns="http://sw.deri.org/2006/02/USPatent/">
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#D500576">
<usptoLink rdf:resource="http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=D500576"/>
<internationalClassification>0101</internationalClassification>
<parentUSClassification>D1</parentUSClassification>
<mainUSClassification>D1/199</mainUSClassification>
<furtherUSClassification>D1/125</furtherUSClassification>
<parentUSClassification>D1</parentUSClassification>
<furtherUSClassification>426/104</furtherUSClassification>
<parentUSClassification>426</parentUSClassification>
<furtherUSClassification>D21/386</furtherUSClassification>
<parentUSClassification>D21</parentUSClassification>
<number>D500576</number>
<country>US</country>
<dc:date>2005-01-11</dc:date>
<term>14</term>
<dc:title>Food blend product</dc:title>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#450378">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#D174778">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#3589914">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>

Ranking Semantic Web Graphs 67

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#4192899">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#D296377">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#5447584">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#5458433">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#D393345">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#D402227">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<citesUSPatent>
<Grant rdf:about="http://sw.deri.org/2006/02/USPatent/PatentID#D409356">
<citedByUSPatent rdf:resource="http://sw.deri.org/2006/02/USPatent/PatentID#D500576"/>
</Grant>
</citesUSPatent>

<applicant>Gerald L. Kraus</applicant>

<agent>Reinhart Boerner Van Deuren S.E.</agent>

<assignee>Sargento Foods, Inc.</assignee>

<primaryExaminer>Pamela Burgess</primaryExaminer>
</Grant>
</rdf:RDF>

B.2.3:RDF-NTRIPLES
<http://sw.deri.org/2006/02/USPatent/PatentID#D409356> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D409356>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D393345> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D393345>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#3589914> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#3589914>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#450378>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#450378> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D296377> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D296377>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D174778> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .

Ranking Semantic Web Graphs 68

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

<http://sw.deri.org/2006/02/USPatent/PatentID#D174778>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#5447584> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#5447584>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D402227>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D402227> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#5458433> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#5458433>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#4192899>
<http://sw.deri.org/2006/02/USPatent/citedByUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#4192899> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/number>
"D500576" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/agent>
"Reinhart Boerner Van Deuren S.E." .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/parentUSClassification> "426" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#5458433> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/parentUSClassification> "D21" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D296377> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/internationalClassification> "0101" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://purl.org/dc/elements/1.1/date> "2005-01-11"
.
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#450378> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D174778> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D402227> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/furtherUSClassification> "D21/386" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/term> "14" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D393345> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/assignee>
"Sargento Foods, Inc." .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://sw.deri.org/2006/02/USPatent/Grant> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://purl.org/dc/elements/1.1/title> "Food blend
product" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#5447584> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/usptoLink>
<http://patft.uspto.gov/netacgi/nph-Parser?patentnumber=D500576> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/furtherUSClassification> "426/104" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/furtherUSClassification> "D1/125" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/applicant>
"Gerald L. Kraus" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/primaryExaminer> "Pamela Burgess" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/country> "US"
.
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/mainUSClassification> "D1/199" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#4192899> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#3589914> .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576>
<http://sw.deri.org/2006/02/USPatent/parentUSClassification> "D1" .
<http://sw.deri.org/2006/02/USPatent/PatentID#D500576> <http://sw.deri.org/2006/02/USPatent/citesUSPatent>
<http://sw.deri.org/2006/02/USPatent/PatentID#D409356> .

Ranking Semantic Web Graphs 69

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

C: EXAMPLE CONFIG.XML - CITESEER
<config>
<predicate>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#type</uri>
 <label>is</label>
 <order>1</order>
 <internal>0</internal>
</predicate>

<predicate>
 <uri>http://www.w3.org/1999/02/22-rdf-syntax-ns#seeAlso</uri>
 <label>Has foaf page</label>
 <order>2</order>
 <internal>0</internal>
</predicate>

<predicate>
 <uri>http://purl.org/dc/elements/1.1/title</uri>
 <label>Title</label>
 <order>3</order>
</predicate>

<predicate>
 <uri>http://purl.org/dc/elements/1.1/description</uri>
 <label>Description</label>
 <order>4</order>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/nick</uri>
 <label>Has Username</label>
 <order>5</order>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/dateOfBirth</uri>
 <label>Was born</label>
 <order>6</order>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/mbox_sha1sum</uri>
 <label>Has Email sha1sum</label>
 <order>7</order>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/page</uri>
 <label>Has Page</label>
 <order>8</order>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/aimChatID</uri>
 <label>Has aimChatID</label>
 <order>9</order>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/homepage</uri>
 <label>Has Homepage</label>
 <order>10</order>
 <internal>0</internal>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/weblog</uri>
 <label>Has Weblog</label>
 <order>11</order>
 <internal>0</internal>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/interest</uri>
 <label>Has Interest</label>
 <order>12</order>
 <internal>1</internal>
</predicate>

<predicate>
 <uri>http://xmlns.com/foaf/0.1/knows</uri>
 <label>knows</label>

Ranking Semantic Web Graphs 70

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

 <order>13</order>
 <internal>1</internal>
</predicate>

<predicate>
 <uri>http://sw.deri.org/2005/05/ranking#dynamicRankScore</uri>
 <label>Dynamic Rank Score</label>
 <order>14</order>
</predicate>

<predicate>
 <uri>http://sw.deri.org/2005/05/ranking#dynamicClusteredState</uri>
 <label>Clustered state (direction and hops if not false)</label>
 <order>15</order>
</predicate>

<subject>
 <type>http://xmlns.com/foaf/0.1/Person</type>
 <typelabel>Person</typelabel>
 <divclass>person</divclass>
</subject>

<subject>
 <type>http://xmlns.com/foaf/0.1/Document</type>
 <typelabel>Document</typelabel>
 <divclass>Document</divclass>
</subject>
</config>

Ranking Semantic Web Graphs 71

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

D: SCREENSHOTS

D.1:SCREENSHOT OF INITIAL SCREEN

D.2:SCREENSHOT OF TABBED BROWSING

Ranking Semantic Web Graphs 72

Ranking Semantic Web Graphs Aidan Hogan Final Year B.E. Thesis

D.3:SCREENSHOT OF ADVANCED BROWSING FORM

D.4:SCREENSHOT OF TREE BROWSING

